BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 19375818)

  • 1. Identification of genes associated with cold acclimation in perennial ryegrass.
    Zhang C; Fei SZ; Warnke S; Li L; Hannapel D
    J Plant Physiol; 2009 Sep; 166(13):1436-45. PubMed ID: 19375818
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ice recrystallization inhibition proteins of perennial ryegrass enhance freezing tolerance.
    Zhang C; Fei SZ; Arora R; Hannapel DJ
    Planta; 2010 Jun; 232(1):155-64. PubMed ID: 20379831
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative analysis of expressed sequence tags from cold-acclimated and non-acclimated leaves of Rhododendron catawbiense Michx.
    Wei H; Dhanaraj AL; Rowland LJ; Fu Y; Krebs SL; Arora R
    Planta; 2005 Jun; 221(3):406-16. PubMed ID: 15933892
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Changes in Lolium perenne transcriptome during cold acclimation in two genotypes adapted to different climatic conditions.
    Abeynayake SW; Byrne S; Nagy I; Jonavičienė K; Etzerodt TP; Boelt B; Asp T
    BMC Plant Biol; 2015 Oct; 15():250. PubMed ID: 26474965
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cold acclimation in warmer extended autumns impairs freezing tolerance of perennial ryegrass (Lolium perenne) and timothy (Phleum pratense).
    Dalmannsdottir S; Jørgensen M; Rapacz M; Østrem L; Larsen A; Rødven R; Rognli OA
    Physiol Plant; 2017 Jul; 160(3):266-281. PubMed ID: 28144950
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of differentially expressed genes under drought stress in perennial ryegrass.
    Liu S; Jiang Y
    Physiol Plant; 2010 Aug; 139(4):375-87. PubMed ID: 20444191
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Isolation and characterization of cold-regulated transcriptional activator LpCBF3 gene from perennial ryegrass (Lolium perenne L.).
    Zhao H; Bughrara SS
    Mol Genet Genomics; 2008 Jun; 279(6):585-94. PubMed ID: 18351391
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential and coordinated expression of Cbf and Cor/Lea genes during long-term cold acclimation in two wheat cultivars showing distinct levels of freezing tolerance.
    Kume S; Kobayashi F; Ishibashi M; Ohno R; Nakamura C; Takumi S
    Genes Genet Syst; 2005 Jun; 80(3):185-97. PubMed ID: 16172531
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Natural genetic variation in acclimation capacity at sub-zero temperatures after cold acclimation at 4 degrees C in different Arabidopsis thaliana accessions.
    Le MQ; Engelsberger WR; Hincha DK
    Cryobiology; 2008 Oct; 57(2):104-12. PubMed ID: 18619434
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of cold acclimation-responsive Rhododendron genes for lipid metabolism, membrane transport and lignin biosynthesis: importance of moderately abundant ESTs in genomic studies.
    Wei H; Dhanaraj AL; Arora R; Rowland LJ; Fu Y; Sun L
    Plant Cell Environ; 2006 Apr; 29(4):558-70. PubMed ID: 17080607
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification and characterization of low temperature stress responsive genes in Poncirus trifoliata by suppression subtractive hybridization.
    Peng T; Zhu XF; Fan QJ; Sun PP; Liu JH
    Gene; 2012 Jan; 492(1):220-8. PubMed ID: 22056698
    [TBL] [Abstract][Full Text] [Related]  

  • 12. RcDhn5, a cold acclimation-responsive dehydrin from Rhododendron catawbiense rescues enzyme activity from dehydration effects in vitro and enhances freezing tolerance in RcDhn5-overexpressing Arabidopsis plants.
    Peng Y; Reyes JL; Wei H; Yang Y; Karlson D; Covarrubias AA; Krebs SL; Fessehaie A; Arora R
    Physiol Plant; 2008 Dec; 134(4):583-97. PubMed ID: 19000195
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Targeted mining of drought stress-responsive genes from EST resources in Cleistogenes songorica.
    Zhang J; John UP; Wang Y; Li X; Gunawardana D; Polotnianka RM; Spangenberg GC; Nan Z
    J Plant Physiol; 2011 Oct; 168(15):1844-51. PubMed ID: 21684035
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differential expression of two winter wheat alpha-tubulin genes during cold acclimation.
    Christov NK; Imai R; Blume Y
    Cell Biol Int; 2008 May; 32(5):574-8. PubMed ID: 18162419
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional and phylogenetic analysis of a DREB/CBF-like gene in perennial ryegrass (Lolium perenne L.).
    Xiong Y; Fei SZ
    Planta; 2006 Sep; 224(4):878-88. PubMed ID: 16614820
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Physiological and transcriptome analysis of Magnolia denudata leaf buds during long-term cold acclimation.
    Wu K; Duan X; Zhu Z; Sang Z; Duan J; Jia Z; Ma L
    BMC Plant Biol; 2021 Oct; 21(1):460. PubMed ID: 34625030
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Clinal variation in the non-acclimated and cold-acclimated freezing tolerance of Arabidopsis thaliana accessions.
    Zuther E; Schulz E; Childs LH; Hincha DK
    Plant Cell Environ; 2012 Oct; 35(10):1860-78. PubMed ID: 22512351
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differential gene expression and gene ontologies associated with increasing water-stress in leaf and root transcriptomes of perennial ryegrass (Lolium perenne).
    Fradera-Sola A; Thomas A; Gasior D; Harper J; Hegarty M; Armstead I; Fernandez-Fuentes N
    PLoS One; 2019; 14(7):e0220518. PubMed ID: 31361773
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of genes associated with adaptation to NaCl toxicity in perennial ryegrass (Lolium perenne L.).
    Li H; Hu T; Fu J
    Ecotoxicol Environ Saf; 2012 May; 79():153-162. PubMed ID: 22277775
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cold acclimation induces rapid and dynamic changes in freeze tolerance mechanisms in the cryophile Deschampsia antarctica E. Desv.
    Chew O; Lelean S; John UP; Spangenberg GC
    Plant Cell Environ; 2012 Apr; 35(4):829-37. PubMed ID: 22070607
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.