These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 19375834)

  • 1. Influence of fertilizing on the (137)Cs soil-plant transfer in a spruce forest of Southern Germany.
    Zibold G; Klemt E; Konopleva I; Konoplev A
    J Environ Radioact; 2009 Jun; 100(6):489-96. PubMed ID: 19375834
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Migration and bioavailability of (137)Cs in forest soil of southern Germany.
    Konopleva I; Klemt E; Konoplev A; Zibold G
    J Environ Radioact; 2009 Apr; 100(4):315-21. PubMed ID: 19167790
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transfer parameter values in temperate forest ecosystems: a review.
    Calmon P; Thiry Y; Zibold G; Rantavaara A; Fesenko S
    J Environ Radioact; 2009 Sep; 100(9):757-66. PubMed ID: 19100665
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Radiocaesium accumulation in stemwood: integrated approach at the scale of forest stands for contaminated Scots pine in Belarus.
    Goor F; Thiry Y; Delvaux B
    J Environ Manage; 2007 Oct; 85(1):129-36. PubMed ID: 17029757
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Radiocaesium soil-to-wood transfer in commercial willow short rotation coppice on contaminated farm land.
    Gommers A; Gäfvert T; Smolders E; Merckx R; Vandenhove H
    J Environ Radioact; 2005; 78(3):267-87. PubMed ID: 15511563
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Retrospective determination of 137Cs specific activity distribution in spruce bark and bark aggregated transfer factor in forests on the scale of the Czech Republic ten years after the Chernobyl accident.
    Suchara I; Rulík P; Hůlka J; Pilátová H
    Sci Total Environ; 2011 Apr; 409(10):1927-34. PubMed ID: 21377193
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The radiocaesium interception potential (RIP) at an agricultural site in Germany.
    Schimmack W; Auerswald K
    J Environ Radioact; 2004; 77(2):143-57. PubMed ID: 15312700
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Laboratory experiments to predict changes in radiocaesium root uptake after flooding events.
    Camps M; Hillier S; Vidal M; Rauret G
    J Environ Radioact; 2003; 67(3):247-59. PubMed ID: 12691722
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transfer of elements relevant to radioactive waste from soil to five boreal plant species.
    Roivainen P; Makkonen S; Holopainen T; Juutilainen J
    Chemosphere; 2011 Apr; 83(3):385-90. PubMed ID: 21190719
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Screening plant species native to Taiwan for remediation of 137Cs-contaminated soil and the effects of K addition and soil amendment on the transfer of 137Cs from soil to plants.
    Chou FI; Chung HP; Teng SP; Sheu ST
    J Environ Radioact; 2005; 80(2):175-81. PubMed ID: 15701382
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Temporal and seasonal variations of radiocaesium content in some plants from the western part of Ukrainian Polesye.
    Grabovskyi VA; Dzendzelyuk OS; Kushnir OS
    J Environ Radioact; 2013 Mar; 117():2-8. PubMed ID: 22710256
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Variability of the soil-to-plant radiocaesium transfer factor for Japanese soils predicted with soil and plant properties.
    Uematsu S; Vandenhove H; Sweeck L; Van Hees M; Wannijn J; Smolders E
    J Environ Radioact; 2016 Mar; 153():51-60. PubMed ID: 26717351
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Root uptake of radionuclides following their acute soil depositions during the growth of selected food crops.
    Choi YH; Lim KM; Jun I; Park DW; Keum DK; Lee CW
    J Environ Radioact; 2009 Sep; 100(9):746-51. PubMed ID: 19188006
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Accumulation of (137)Cs in Brazilian soils and its transfer to plants under different climatic conditions.
    Handl J; Sachse R; Jakob D; Michel R; Evangelista H; Gonçalves AC; de Freitas AC
    J Environ Radioact; 2008 Feb; 99(2):271-87. PubMed ID: 17884260
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of K and bentonite additions on Cs-transfer to ryegrass.
    Vandenhove H; Cremers A; Smolders E; Van Hees M
    J Environ Radioact; 2005; 81(2-3):233-53. PubMed ID: 15795037
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Accumulation and transfer of 137Cs and 90Sr in the plants of the forest ecosystem near the Ignalina Nuclear Power Plant.
    Lukšienė B; Marčiulionienė D; Gudelienė I; Schönhofer F
    J Environ Radioact; 2013 Feb; 116():1-9. PubMed ID: 23085187
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the influence of soil properties on the transfer of 137Cs from two soils (Chromic Luvisol and Eutric Fluvisol) to wheat and cabbage.
    Djingova R; Kovacheva P; Todorov B; Zlateva B; Kuleff I
    J Environ Radioact; 2005; 82(1):63-79. PubMed ID: 15829337
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Distribution and uptake of 137Cs in relation to alkali metals in a perhumid montane forest ecosystem.
    Chao JH; Chiu CY; Lee HP
    Appl Radiat Isot; 2008 Oct; 66(10):1287-94. PubMed ID: 18417349
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plants as bio-monitors for Cs-137, Pu-238, Pu-239,240 and K-40 at the Savannah River Site.
    Caldwell EF; Duff MC; Ferguson CE; Coughlin DP
    J Environ Monit; 2011 May; 13(5):1410-21. PubMed ID: 21412545
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transfer of 137Cs to rice plants from various paddy soils contaminated under flooded conditions at different growth stages.
    Choi YH; Lim KM; Park HG; Park DW; Kang HS; Lee HS
    J Environ Radioact; 2005; 80(1):45-58. PubMed ID: 15653186
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.