These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 19376192)

  • 1. Neural model of frog ventilatory rhythmogenesis.
    Horcholle-Bossavit G; Quenet B
    Biosystems; 2009 Jul; 97(1):35-43. PubMed ID: 19376192
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Introduction of respiratory pattern generators into models of respiratory control.
    Longobardo G; Evangelisti CJ; Cherniack NS
    Respir Physiol Neurobiol; 2005 Oct; 148(3):285-301. PubMed ID: 16143285
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Input-driven oscillations in networks with excitatory and inhibitory neurons with dynamic synapses.
    Marinazzo D; Kappen HJ; Gielen SC
    Neural Comput; 2007 Jul; 19(7):1739-65. PubMed ID: 17521278
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mapped clock oscillators as ring devices and their application to neuronal electrical rhythms.
    Zalay OC; Bardakjian BL
    IEEE Trans Neural Syst Rehabil Eng; 2008 Jun; 16(3):233-44. PubMed ID: 18586602
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synchronization in networks of excitatory and inhibitory neurons with sparse, random connectivity.
    Börgers C; Kopell N
    Neural Comput; 2003 Mar; 15(3):509-38. PubMed ID: 12620157
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neural organization of the ventilatory activity in the frog, Rana catesbeiana. I.
    Kogo N; Perry SF; Remmers JE
    J Neurobiol; 1994 Sep; 25(9):1067-79. PubMed ID: 7815064
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ancient gill and lung oscillators may generate the respiratory rhythm of frogs and rats.
    Vasilakos K; Wilson RJ; Kimura N; Remmers JE
    J Neurobiol; 2005 Feb; 62(3):369-85. PubMed ID: 15551345
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Respiratory circuits: function, mechanisms, topology, and pathology.
    Mironov S
    Neuroscientist; 2009 Apr; 15(2):194-208. PubMed ID: 19307425
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pacemaker and network mechanisms of rhythm generation: cooperation and competition.
    Ivanchenko MV; Thomas Nowotny ; Selverston AI; Rabinovich MI
    J Theor Biol; 2008 Aug; 253(3):452-61. PubMed ID: 18514740
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The locust olfactory system as a case study for modeling dynamics of neurobiological networks: from discrete time neurons to continuous time neurons.
    Quenet B; Horcholle-Bossavit G
    Arch Ital Biol; 2007 Nov; 145(3-4):263-75. PubMed ID: 18075120
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chaotic frequency scaling in a coupled oscillator model for free rhythmic actions.
    Raftery A; Cusumano J; Sternad D
    Neural Comput; 2008 Jan; 20(1):205-26. PubMed ID: 18045006
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of striatal dynamics: the existence of two modes of behaviour.
    Alexander ME; Wickens JR
    J Theor Biol; 1993 Aug; 163(4):413-38. PubMed ID: 8246509
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A first-order nonhomogeneous Markov model for the response of spiking neurons stimulated by small phase-continuous signals.
    Tapson J; Jin C; van Schaik A; Etienne-Cummings R
    Neural Comput; 2009 Jun; 21(6):1554-88. PubMed ID: 19191600
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-selected modular recurrent neural networks with postural and inertial subnetworks applied to complex movements.
    Draye JP; Winters JM; Cheron G
    Biol Cybern; 2002 Jul; 87(1):27-39. PubMed ID: 12111266
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling the top-down influences on the lateral interactions in the visual cortex.
    Setić M; Domijan D
    Brain Res; 2008 Aug; 1225():86-101. PubMed ID: 18620341
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computation with spikes in a winner-take-all network.
    Oster M; Douglas R; Liu SC
    Neural Comput; 2009 Sep; 21(9):2437-65. PubMed ID: 19548795
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two-point heterogeneous connections in a continuum neural field model.
    Brackley CA; Turner MS
    Biol Cybern; 2009 May; 100(5):371-83. PubMed ID: 19350264
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Effect of the background activity of a network of excitatory neuron-like elements on the conduction of excitation].
    Shul'gina GI; Ponomarev VN; Rezvova IR; Frolov AA
    Zh Vyssh Nerv Deiat Im I P Pavlova; 1988; 38(4):715-24. PubMed ID: 3195231
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computational analysis in vitro: dynamics and plasticity of a neuro-robotic system.
    Karniel A; Kositsky M; Fleming KM; Chiappalone M; Sanguineti V; Alford ST; Mussa-Ivaldi FA
    J Neural Eng; 2005 Sep; 2(3):S250-65. PubMed ID: 16135888
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polyrhythmic synchronization in bursting networking motifs.
    Shilnikov A; Gordon R; Belykh I
    Chaos; 2008 Sep; 18(3):037120. PubMed ID: 19045494
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.