These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 19376281)

  • 41. [Surface structures of bones and their oscillatory behavior].
    Graef W; Christmann C
    Verh Anat Ges; 1977; (71 Pt 2):1343-7. PubMed ID: 610156
    [No Abstract]   [Full Text] [Related]  

  • 42. Three-dimensional reconstituted extracellular matrix scaffolds for tissue engineering.
    Narayanan K; Leck KJ; Gao S; Wan AC
    Biomaterials; 2009 Sep; 30(26):4309-17. PubMed ID: 19477508
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A bio-mechanical study on determining the indications of compression plating, with special reference to the friction coefficient of the fracture surface of human bone.
    Kondo S
    Bull Osaka Med Sch; 1974 Oct; 20(2):115-25. PubMed ID: 4462883
    [No Abstract]   [Full Text] [Related]  

  • 44. Surface energies and the bone induction principle.
    Eriksson C
    J Biomed Mater Res; 1985 Sep; 19(7):833-49. PubMed ID: 4077899
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Fatigue of mineralized tissues: cortical bone and dentin.
    Kruzic JJ; Ritchie RO
    J Mech Behav Biomed Mater; 2008 Jan; 1(1):3-17. PubMed ID: 19627767
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Mend the gap.
    Charlotte S
    Nat Med; 2003 Mar; 9(3):267. PubMed ID: 12612574
    [No Abstract]   [Full Text] [Related]  

  • 47. [Impedance testing of compact bone tissue in hypokinetic rats].
    Berezovs'kyĭ VIa; Levashov OM; Safonov SL; Levashov MI; Litovka IH
    Fiziol Zh (1994); 2005; 51(5):23-30. PubMed ID: 16329388
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Two types of mineral-related matrix vesicles in the bone mineralization of zebrafish.
    Yang L; Zhang Y; Cui FZ
    Biomed Mater; 2007 Mar; 2(1):21-5. PubMed ID: 18458429
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The histological structure of glyptosaurine osteoderms (Squamata: Anguidae), and the problem of osteoderm development in squamates.
    Buffrénil Vd; Sire JY; Rage JC
    J Morphol; 2010 Jun; 271(6):729-37. PubMed ID: 20101726
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Surface bone histology of the occipital bone in humans and chimpanzees.
    Mowbray K
    Anat Rec B New Anat; 2005 Mar; 283(1):14-22. PubMed ID: 15761834
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Physical exercise improves properties of bone and its collagen network in growing and maturing mice.
    Isaksson H; Tolvanen V; Finnilä MA; Iivarinen J; Tuukkanen J; Seppänen K; Arokoski JP; Brama PA; Jurvelin JS; Helminen HJ
    Calcif Tissue Int; 2009 Sep; 85(3):247-56. PubMed ID: 19641838
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Segmental bone regeneration using an rhBMP-2-loaded gelatin/nanohydroxyapatite/fibrin scaffold in a rabbit model.
    Liu Y; Lu Y; Tian X; Cui G; Zhao Y; Yang Q; Yu S; Xing G; Zhang B
    Biomaterials; 2009 Oct; 30(31):6276-85. PubMed ID: 19683811
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The quantitative assessment of peri-implant bone responses using histomorphometry and micro-computed tomography.
    Schouten C; Meijer GJ; van den Beucken JJ; Spauwen PH; Jansen JA
    Biomaterials; 2009 Sep; 30(27):4539-49. PubMed ID: 19500840
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Bone as an ion exchange system: evidence for a link between mechanotransduction and metabolic needs.
    Rubinacci A; Covini M; Bisogni C; Villa I; Galli M; Palumbo C; Ferretti M; Muglia MA; Marotti G
    Am J Physiol Endocrinol Metab; 2002 Apr; 282(4):E851-64. PubMed ID: 11882505
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Enhanced osteoconductivity of micro-structured titanium implants (XiVE S CELLplus) by addition of surface calcium chemistry: a histomorphometric study in the rabbit femur.
    Park JW; Kim HK; Kim YJ; An CH; Hanawa T
    Clin Oral Implants Res; 2009 Jul; 20(7):684-90. PubMed ID: 19489932
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Osteochondral defect repair after implantation of biodegradable scaffolds: indirect magnetic resonance arthrography and histopathologic correlation.
    Streitparth F; Schöttle P; Schlichting K; Schell H; Fischbach F; Denecke T; Duda GN; Schröder RJ
    Acta Radiol; 2009 Sep; 50(7):765-74. PubMed ID: 19626474
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Early bone response to sandblasted, dual acid-etched and H2O2/HCl treated titanium implants: an experimental study in the rabbit.
    He FM; Yang GL; Li YN; Wang XX; Zhao SF
    Int J Oral Maxillofac Surg; 2009 Jun; 38(6):677-81. PubMed ID: 19406618
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Skeletal fragility and bone quality.
    Recker RR
    J Musculoskelet Neuronal Interact; 2007; 7(1):54-5. PubMed ID: 17396006
    [No Abstract]   [Full Text] [Related]  

  • 59. An electron microscopic study on the process of acid demineralization of cortical bone.
    Lewandrowski K; Tomford WW; Michaud NA; Schomacker KT; Deutsch TF
    Calcif Tissue Int; 1997 Oct; 61(4):294-7. PubMed ID: 9312199
    [TBL] [Abstract][Full Text] [Related]  

  • 60. [Different effects of various embedding techniques on confocal laser scanning microscopy image and mechanical properties of cortical bone].
    Piepkorn B; Wilhelm C; Kann P; Grötz KA; Götz H; Duschner H; Beyer J
    Biomed Tech (Berl); 1998; 43 Suppl():407. PubMed ID: 9859418
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.