These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 19376647)

  • 1. Electrocoagulation for the treatment of textile wastewaters with Al or Fe electrodes: compared variations of COD levels, turbidity and absorbance.
    Zongo I; Maiga AH; Wéthé J; Valentin G; Leclerc JP; Paternotte G; Lapicque F
    J Hazard Mater; 2009 Sep; 169(1-3):70-6. PubMed ID: 19376647
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Techno-economical evaluation of electrocoagulation for the textile wastewater using different electrode connections.
    Kobya M; Bayramoglu M; Eyvaz M
    J Hazard Mater; 2007 Sep; 148(1-2):311-8. PubMed ID: 17368931
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Removal of suspended solids and turbidity from marble processing wastewaters by electrocoagulation: comparison of electrode materials and electrode connection systems.
    Solak M; Kiliç M; Hüseyin Y; Sencan A
    J Hazard Mater; 2009 Dec; 172(1):345-52. PubMed ID: 19651474
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Treatment of textile wastewater by a hybrid electrocoagulation/nanofiltration process.
    Aouni A; Fersi C; Ben Sik Ali M; Dhahbi M
    J Hazard Mater; 2009 Sep; 168(2-3):868-74. PubMed ID: 19369000
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The removal of lignin and phenol from paper mill effluents by electrocoagulation.
    Uğurlu M; Gürses A; Doğar C; Yalçin M
    J Environ Manage; 2008 May; 87(3):420-8. PubMed ID: 17360102
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Treatment of textile wastewaters by electrocoagulation using iron and aluminum electrodes.
    Kobya M; Can OT; Bayramoglu M
    J Hazard Mater; 2003 Jun; 100(1-3):163-78. PubMed ID: 12835020
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Treatment of the baker's yeast wastewater by electrocoagulation.
    Kobya M; Delipinar S
    J Hazard Mater; 2008 Jun; 154(1-3):1133-40. PubMed ID: 18082942
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chemical or electrochemical techniques, followed by ion exchange, for recycle of textile dye wastewater.
    Raghu S; Ahmed Basha C
    J Hazard Mater; 2007 Oct; 149(2):324-30. PubMed ID: 17512112
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Treatment of chemical mechanical polishing wastewater by electrocoagulation: system performances and sludge settling characteristics.
    Lai CL; Lin SH
    Chemosphere; 2004 Jan; 54(3):235-42. PubMed ID: 14575735
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Removal of arsenic from wastewaters using electrocoagulation.
    Deniel R; Bindu VH; Rao AV; Anjaneyulu Y
    J Environ Sci Eng; 2008 Oct; 50(4):283-8. PubMed ID: 19697763
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrochemical removal of Cr(VI) from aqueous media using iron and aluminum as electrode materials: towards a better understanding of the involved phenomena.
    Mouedhen G; Feki M; De Petris-Wery M; Ayedi HF
    J Hazard Mater; 2009 Sep; 168(2-3):983-91. PubMed ID: 19329251
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mercury(II) removal from water by electrocoagulation using aluminium and iron electrodes.
    Nanseu-Njiki CP; Tchamango SR; Ngom PC; Darchen A; Ngameni E
    J Hazard Mater; 2009 Sep; 168(2-3):1430-6. PubMed ID: 19349114
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrocoagulation of simulated reactive dyebath effluent with aluminum and stainless steel electrodes.
    Arslan-Alaton I; Kabdaşli I; Vardar B; Tünay O
    J Hazard Mater; 2009 May; 164(2-3):1586-94. PubMed ID: 18849115
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Zero Liquid Discharge approach in plating industry: treatment of degreasing effluents by electrocoagulation and anodic oxidation.
    Hermon S; Grange D; Pellet Y; Lloret G; Oyonarte S; Bosch F; Coste M
    Water Sci Technol; 2008; 58(3):519-27. PubMed ID: 18725717
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of operating parameters on indium (III) ion removal by iron electrocoagulation and evaluation of specific energy consumption.
    Chou WL; Wang CT; Huang KY
    J Hazard Mater; 2009 Aug; 167(1-3):467-74. PubMed ID: 19203835
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Treatment of dairy effluents by electrocoagulation using aluminium electrodes.
    Tchamango S; Nanseu-Njiki CP; Ngameni E; Hadjiev D; Darchen A
    Sci Total Environ; 2010 Jan; 408(4):947-52. PubMed ID: 19900696
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrochemical oxidation for the treatment of textile industry wastewater.
    Radha KV; Sridevi V; Kalaivani K
    Bioresour Technol; 2009 Jan; 100(2):987-90. PubMed ID: 18760596
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrocoagulation for the treatment of textile industry effluent--a review.
    Khandegar V; Saroha AK
    J Environ Manage; 2013 Oct; 128():949-63. PubMed ID: 23892280
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Treatment of bio-digester effluent by electrocoagulation using iron electrodes.
    Kumar M; Ponselvan FI; Malviya JR; Srivastava VC; Mall ID
    J Hazard Mater; 2009 Jun; 165(1-3):345-52. PubMed ID: 19036506
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Study of COD and turbidity removal from real oxide-CMP wastewater by iron electrocoagulation and the evaluation of specific energy consumption.
    Chou WL; Wang CT; Chang SY
    J Hazard Mater; 2009 Sep; 168(2-3):1200-7. PubMed ID: 19342168
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.