These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
7. First neutron generation in the BINP accelerator based neutron source. Bayanov B; Burdakov A; Chudaev V; Ivanov A; Konstantinov S; Kuznetsov A; Makarov A; Malyshkin G; Mekler K; Sorokin I; Sulyaev Y; Taskaev S Appl Radiat Isot; 2009 Jul; 67(7-8 Suppl):S285-7. PubMed ID: 19375928 [TBL] [Abstract][Full Text] [Related]
8. Development of a tandem-electrostatic-quadrupole accelerator facility for BNCT. Kreiner AJ; Thatar Vento V; Levinas P; Bergueiro J; Di Paolo H; Burlon AA; Kesque JM; Valda AA; Debray ME; Somacal HR; Minsky DM; Estrada L; Hazarabedian A; Johann F; Suarez Sandin JC; Castell W; Davidson J; Davidson M; Giboudot Y; Repetto M; Obligado M; Nery JP; Huck H; Igarzabal M; Fernandez Salares A Appl Radiat Isot; 2009 Jul; 67(7-8 Suppl):S266-9. PubMed ID: 19376714 [TBL] [Abstract][Full Text] [Related]
9. Be target development for the accelerator-based SPES-BNCT facility at INFN Legnaro. Esposito J; Colautti P; Fabritsiev S; Gervash A; Giniyatulin R; Lomasov VN; Makhankov A; Mazul I; Pisent A; Pokrovsky A; Rumyantsev M; Tanchuk V; Tecchio L Appl Radiat Isot; 2009 Jul; 67(7-8 Suppl):S270-3. PubMed ID: 19375334 [TBL] [Abstract][Full Text] [Related]
10. High power accelerator-based boron neutron capture with a liquid lithium target and new applications to treatment of infectious diseases. Halfon S; Paul M; Steinberg D; Nagler A; Arenshtam A; Kijel D; Polacheck I; Srebnik M Appl Radiat Isot; 2009 Jul; 67(7-8 Suppl):S278-81. PubMed ID: 19406650 [TBL] [Abstract][Full Text] [Related]
12. An accelerator-based epithermal neutron beam design for BNCT and dosimetric evaluation using a voxel head phantom. Lee DJ; Han CY; Park SH; Kim JK Radiat Prot Dosimetry; 2004; 110(1-4):655-60. PubMed ID: 15353726 [TBL] [Abstract][Full Text] [Related]
13. Improvement of dose distribution in phantom by using epithermal neutron source based on the Be(p,n) reaction using a 30 MeV proton cyclotron accelerator. Tanaka H; Sakurai Y; Suzuki M; Takata T; Masunaga S; Kinashi Y; Kashino G; Liu Y; Mitsumoto T; Yajima S; Tsutsui H; Takada M; Maruhashi A; Ono K Appl Radiat Isot; 2009 Jul; 67(7-8 Suppl):S258-61. PubMed ID: 19376720 [TBL] [Abstract][Full Text] [Related]
14. An optimized neutron-beam shaping assembly for accelerator-based BNCT. Burlon AA; Kreiner AJ; Valda AA; Minsky DM Appl Radiat Isot; 2004 Nov; 61(5):811-5. PubMed ID: 15308149 [TBL] [Abstract][Full Text] [Related]
15. High-power electron beam tests of a liquid-lithium target and characterization study of (7)Li(p,n) near-threshold neutrons for accelerator-based boron neutron capture therapy. Halfon S; Paul M; Arenshtam A; Berkovits D; Cohen D; Eliyahu I; Kijel D; Mardor I; Silverman I Appl Radiat Isot; 2014 Jun; 88():238-42. PubMed ID: 24387907 [TBL] [Abstract][Full Text] [Related]
16. Variations in lithium target thickness and proton energy stability for the near-threshold 7Li(p,n)7Be accelerator-based BNCT. Kobayashi T; Bengua G; Tanaka K; Nakagawa Y Phys Med Biol; 2007 Feb; 52(3):645-58. PubMed ID: 17228111 [TBL] [Abstract][Full Text] [Related]
17. High-power liquid-lithium target prototype for accelerator-based boron neutron capture therapy. Halfon S; Paul M; Arenshtam A; Berkovits D; Bisyakoev M; Eliyahu I; Feinberg G; Hazenshprung N; Kijel D; Nagler A; Silverman I Appl Radiat Isot; 2011 Dec; 69(12):1654-6. PubMed ID: 21459008 [TBL] [Abstract][Full Text] [Related]
18. Increase of the beam intensity for BNCT by changing the core configuration at THOR. Liu HM; Peir JJ; Liu YH; Tsai PE; Jiang SH Appl Radiat Isot; 2009 Jul; 67(7-8 Suppl):S247-50. PubMed ID: 19394237 [TBL] [Abstract][Full Text] [Related]