These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 19376766)

  • 1. Self-healing behaviour in man-made engineering materials: bioinspired but taking into account their intrinsic character.
    van der Zwaag S; van Dijk NH; Jonkers HM; Mookhoek SD; Sloof WG
    Philos Trans A Math Phys Eng Sci; 2009 May; 367(1894):1689-704. PubMed ID: 19376766
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Self-healing polymer composites: mimicking nature to enhance performance.
    Trask RS; Williams HR; Bond IP
    Bioinspir Biomim; 2007 Mar; 2(1):P1-9. PubMed ID: 17671320
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biomimetic design of materials and biomaterials inspired by the structure of nacre.
    Luz GM; Mano JF
    Philos Trans A Math Phys Eng Sci; 2009 Apr; 367(1893):1587-605. PubMed ID: 19324725
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioresorbable composites prepared by supercritical fluid foaming.
    Mathieu LM; Montjovent MO; Bourban PE; Pioletti DP; Månson JA
    J Biomed Mater Res A; 2005 Oct; 75(1):89-97. PubMed ID: 16037939
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of biodegradable polyurethane microfibers for tissue engineering.
    Rockwood DN; Woodhouse KA; Fromstein JD; Chase DB; Rabolt JF
    J Biomater Sci Polym Ed; 2007; 18(6):743-58. PubMed ID: 17623555
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Post-self-assembly experimentation on extruded collagen fibres for tissue engineering applications.
    Zeugolis DI; Paul RG; Attenburrow G
    Acta Biomater; 2008 Nov; 4(6):1646-56. PubMed ID: 18590987
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bone tissue engineering: a review in bone biomimetics and drug delivery strategies.
    Porter JR; Ruckh TT; Popat KC
    Biotechnol Prog; 2009; 25(6):1539-60. PubMed ID: 19824042
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biomimetic approaches for tissue engineering.
    Reddy R; Reddy N
    J Biomater Sci Polym Ed; 2018 Oct; 29(14):1667-1685. PubMed ID: 29998794
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recent advances in biomimetic sensing technologies.
    Johnson EA; Bonser RH; Jeronimidis G
    Philos Trans A Math Phys Eng Sci; 2009 Apr; 367(1893):1559-69. PubMed ID: 19324723
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tissue engineering scaffolds for the regeneration of craniofacial bone.
    Chan WD; Perinpanayagam H; Goldberg HA; Hunter GK; Dixon SJ; Santos GC; Rizkalla AS
    J Can Dent Assoc; 2009 Jun; 75(5):373-7. PubMed ID: 19531334
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrospinning technology in tissue regeneration.
    Castaño O; Eltohamy M; Kim HW
    Methods Mol Biol; 2012; 811():127-40. PubMed ID: 22042677
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Selective laser sintering of biocompatible polymers for applications in tissue engineering.
    Tan KH; Chua CK; Leong KF; Cheah CM; Gui WS; Tan WS; Wiria FE
    Biomed Mater Eng; 2005; 15(1-2):113-24. PubMed ID: 15623935
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ceramic bioactivity: progresses, challenges and perspectives.
    Lee KY; Park M; Kim HM; Lim YJ; Chun HJ; Kim H; Moon SH
    Biomed Mater; 2006 Jun; 1(2):R31-7. PubMed ID: 18460754
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adhesion between biodegradable polymers and hydroxyapatite: Relevance to synthetic bone-like materials and tissue engineering scaffolds.
    Neuendorf RE; Saiz E; Tomsia AP; Ritchie RO
    Acta Biomater; 2008 Sep; 4(5):1288-96. PubMed ID: 18485842
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Responsive materials: soft answers for hard problems.
    Mather PT
    Nat Mater; 2007 Feb; 6(2):93-4. PubMed ID: 17268492
    [No Abstract]   [Full Text] [Related]  

  • 16. Biomimetic hydroxyapatite-containing composite nanofibrous substrates for bone tissue engineering.
    Venugopal J; Prabhakaran MP; Zhang Y; Low S; Choon AT; Ramakrishna S
    Philos Trans A Math Phys Eng Sci; 2010 Apr; 368(1917):2065-81. PubMed ID: 20308115
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Emerging Applications of Bioinspired Slippery Surfaces in Biomedical Fields.
    He W; Liu P; Zhang J; Yao X
    Chemistry; 2018 Oct; 24(56):14864-14877. PubMed ID: 29697877
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 3D fiber-deposited scaffolds for tissue engineering: influence of pores geometry and architecture on dynamic mechanical properties.
    Moroni L; de Wijn JR; van Blitterswijk CA
    Biomaterials; 2006 Mar; 27(7):974-85. PubMed ID: 16055183
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biomimetic engineering of cellulose-based materials.
    Teeri TT; Brumer H; Daniel G; Gatenholm P
    Trends Biotechnol; 2007 Jul; 25(7):299-306. PubMed ID: 17512068
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Three-dimensional, bioactive, biodegradable, polymer-bioactive glass composite scaffolds with improved mechanical properties support collagen synthesis and mineralization of human osteoblast-like cells in vitro.
    Lu HH; El-Amin SF; Scott KD; Laurencin CT
    J Biomed Mater Res A; 2003 Mar; 64(3):465-74. PubMed ID: 12579560
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.