These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 19376892)

  • 1. Induction of extracellular hydroxyl radical production by white-rot fungi through quinone redox cycling.
    Gómez-Toribio V; García-Martín AB; Martínez MJ; Martínez AT; Guillén F
    Appl Environ Microbiol; 2009 Jun; 75(12):3944-53. PubMed ID: 19376892
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhancing the production of hydroxyl radicals by Pleurotus eryngii via quinone redox cycling for pollutant removal.
    Gómez-Toribio V; García-Martín AB; Martínez MJ; Martínez AT; Guillén F
    Appl Environ Microbiol; 2009 Jun; 75(12):3954-62. PubMed ID: 19376890
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Production of hydroxyl radical by the synergistic action of fungal laccase and aryl alcohol oxidase.
    Guillén F; Gómez-Toribio V; Martínez MJ; Martínez AT
    Arch Biochem Biophys; 2000 Nov; 383(1):142-7. PubMed ID: 11097187
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oxygen activation during oxidation of methoxyhydroquinones by laccase from Pleurotus eryngii.
    Guillén F; Muñoz C; Gómez-Toribio V; Martínez AT; Jesús Martínez M
    Appl Environ Microbiol; 2000 Jan; 66(1):170-5. PubMed ID: 10618219
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Advanced oxidation of benzene, toluene, ethylbenzene and xylene isomers (BTEX) by Trametes versicolor.
    Aranda E; Marco-Urrea E; Caminal G; Arias ME; García-Romera I; Guillén F
    J Hazard Mater; 2010 Sep; 181(1-3):181-6. PubMed ID: 20627409
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quinone redox cycling in the ligninolytic fungus Pleurotus eryngii leading to extracellular production of superoxide anion radical.
    Guillén F; Martínez MJ; Muñoz C; Martínez AT
    Arch Biochem Biophys; 1997 Mar; 339(1):190-9. PubMed ID: 9056249
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Expanding the Physiological Role of Aryl-Alcohol Flavooxidases as Quinone Reductases.
    Ferreira P; Carro J; Balcells B; Martínez AT; Serrano A
    Appl Environ Microbiol; 2023 May; 89(5):e0184422. PubMed ID: 37154753
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Extracellular redox cycling and hydroxyl radical production occurs widely in lichenized Ascomycetes.
    Moyo CE; Beckett RP; Trifonova TV; Minibayeva FV
    Fungal Biol; 2017; 121(6-7):582-588. PubMed ID: 28606353
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Induction of Extracellular Hydroxyl Radicals Production in the White-Rot Fungus
    García-Martín AB; Rodríguez J; Molina-Guijarro JM; Fajardo C; Domínguez G; Hernández M; Guillén F
    J Fungi (Basel); 2024 Jan; 10(1):. PubMed ID: 38248961
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DNA strand scission by polycyclic aromatic hydrocarbon o-quinones: role of reactive oxygen species, Cu(II)/Cu(I) redox cycling, and o-semiquinone anion radicals,
    Flowers L; Ohnishi ST; Penning TM
    Biochemistry; 1997 Jul; 36(28):8640-8. PubMed ID: 9214311
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synergistic lignin degradation between Phanerochaete chrysosporium and Fenton chemistry is mediated through iron cycling and ligninolytic enzyme induction.
    van der Made JJA; Landis EA; Deans GT; Lai RA; Chandran K
    Sci Total Environ; 2023 Dec; 905():166767. PubMed ID: 37660814
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reductions catalyzed by a quinone and peroxidases from Phanerochaete chrysosporium.
    Rasmussen SJ; Chung N; Khindaria A; Grover TA; Aust SD
    Arch Biochem Biophys; 1995 Jul; 320(2):243-9. PubMed ID: 7625830
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Co-cultured production of lignin-modifying enzymes with white-rot fungi.
    Qi-He C; Krügener S; Hirth T; Rupp S; Zibek S
    Appl Biochem Biotechnol; 2011 Sep; 165(2):700-18. PubMed ID: 21647688
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transformation of 2,4,6-trichlorophenol by the white rot fungi Panus tigrinus and Coriolus versicolor.
    Leontievsky AA; Myasoedova NM; Baskunov BP; Evans CS; Golovleva LA
    Biodegradation; 2000; 11(5):331-40. PubMed ID: 11487063
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Potential mechanism for pentachlorophenol-induced carcinogenicity: a novel mechanism for metal-independent production of hydroxyl radicals.
    Zhu BZ; Shan GQ
    Chem Res Toxicol; 2009 Jun; 22(6):969-77. PubMed ID: 19408893
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Widespread ability of fungi to drive quinone redox cycling for biodegradation.
    Krueger MC; Bergmann M; Schlosser D
    FEMS Microbiol Lett; 2016 Jun; 363(11):. PubMed ID: 27190290
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Requirement for iron for the production of hydroxyl radicals by rat liver quinone reductase.
    Dicker E; Cederbaum AI
    J Pharmacol Exp Ther; 1993 Sep; 266(3):1282-90. PubMed ID: 7690400
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oxidation of atenolol, propranolol, carbamazepine and clofibric acid by a biological Fenton-like system mediated by the white-rot fungus Trametes versicolor.
    Marco-Urrea E; Radjenović J; Caminal G; Petrović M; Vicent T; Barceló D
    Water Res; 2010 Jan; 44(2):521-32. PubMed ID: 19850317
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The ligninolytic system of the white rot fungus Pycnoporus cinnabarinus: purification and characterization of the laccase.
    Eggert C; Temp U; Eriksson KE
    Appl Environ Microbiol; 1996 Apr; 62(4):1151-8. PubMed ID: 8919775
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Production of ligninolytic enzymes for dye decolorization by cocultivation of white-rot fungi Pleurotus ostreatus and phanerochaete chrysosporium under solid-state fermentation.
    Verma P; Madamwar D
    Appl Biochem Biotechnol; 2002; 102-103(1-6):109-18. PubMed ID: 12396115
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.