These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 19376917)

  • 1. Coaggregation by the freshwater bacterium Sphingomonas natatoria alters dual-species biofilm formation.
    Min KR; Rickard AH
    Appl Environ Microbiol; 2009 Jun; 75(12):3987-97. PubMed ID: 19376917
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Physicochemical parameters influencing coaggregation between the freshwater bacteria Sphingomonas natatoria 2.1 and Micrococcus luteus 2.13.
    Min KR; Zimmer MN; Rickard AH
    Biofouling; 2010 Nov; 26(8):931-40. PubMed ID: 21058055
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of growth environment on coaggregation between freshwater biofilm bacteria.
    Rickard AH; Gilbert P; Handley PS
    J Appl Microbiol; 2004; 96(6):1367-73. PubMed ID: 15139931
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel microplate-based spectrophotometric method for the quantitative assessment of freshwater bacterial coaggregation kinetics.
    Hayashi MAL; Narender Singh K; Wing JTF; Rickard AH
    Biofouling; 2023 Mar; 39(3):303-315. PubMed ID: 37226999
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coaggregation occurs amongst bacteria within and between biofilms in domestic showerheads.
    Vornhagen J; Stevens M; McCormick DW; Dowd SE; Eisenberg JN; Boles BR; Rickard AH
    Biofouling; 2013; 29(1):53-68. PubMed ID: 23194413
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coaggregation between aquatic bacteria is mediated by specific-growth-phase-dependent lectin-saccharide interactions.
    Rickard AH; Leach SA; Buswell CM; High NJ; Handley PS
    Appl Environ Microbiol; 2000 Jan; 66(1):431-4. PubMed ID: 10618261
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Shear rate moderates community diversity in freshwater biofilms.
    Rickard AH; McBain AJ; Stead AT; Gilbert P
    Appl Environ Microbiol; 2004 Dec; 70(12):7426-35. PubMed ID: 15574945
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mini-review: Microbial coaggregation: ubiquity and implications for biofilm development.
    Katharios-Lanwermeyer S; Xi C; Jakubovics NS; Rickard AH
    Biofouling; 2014; 30(10):1235-51. PubMed ID: 25421394
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bacterial coaggregation in aquatic systems.
    Afonso AC; Gomes IB; Saavedra MJ; Giaouris E; Simões LC; Simões M
    Water Res; 2021 May; 196():117037. PubMed ID: 33751976
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adhesion and biofilm formation on polystyrene by drinking water-isolated bacteria.
    Simões LC; Simões M; Vieira MJ
    Antonie Van Leeuwenhoek; 2010 Oct; 98(3):317-29. PubMed ID: 20405208
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Path-dependency of the interaction between coaggregating and between non-coaggregating oral bacterial pairs--a thermodynamic approach.
    Postollec F; Busscher HJ; van Kooten TG; van der Mei HC; Norde W
    Colloids Surf B Biointerfaces; 2004 Aug; 37(1-2):53-60. PubMed ID: 15450309
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-throughput quantitative method for assessing coaggregation among oral bacterial species.
    Levin-Sparenberg E; Shin JM; Hastings EM; Freeland M; Segaloff H; Rickard AH; Foxman B
    Lett Appl Microbiol; 2016 Oct; 63(4):274-81. PubMed ID: 27455031
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamics and control of biofilms of the oligotrophic bacterium Caulobacter crescentus.
    Entcheva-Dimitrov P; Spormann AM
    J Bacteriol; 2004 Dec; 186(24):8254-66. PubMed ID: 15576774
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transcriptional responses of Streptococcus gordonii and Fusobacterium nucleatum to coaggregation.
    Mutha NVR; Mohammed WK; Krasnogor N; Tan GYA; Choo SW; Jakubovics NS
    Mol Oral Microbiol; 2018 Dec; 33(6):450-464. PubMed ID: 30329223
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vitro interaction of chronic wound bacteria in biofilms.
    Malic S; Hill KE; Playle R; Thomas DW; Williams DW
    J Wound Care; 2011 Dec; 20(12):569-70, 572, 574-7. PubMed ID: 22240883
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Isolation and characterization of broad spectrum coaggregating bacteria from different water systems for potential use in bioaugmentation.
    Cheng Z; Meng X; Wang H; Chen M; Li M
    PLoS One; 2014; 9(4):e94220. PubMed ID: 24736645
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coaggregation between Rhodococcus and Acinetobacter strains isolated from the food industry.
    Møretrø T; Sharifzadeh S; Langsrud S; Heir E; Rickard AH
    Can J Microbiol; 2015 Jul; 61(7):503-12. PubMed ID: 26103135
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Extracellular DNA Provides Structural Integrity to a Micrococcus luteus Biofilm.
    Blakeman JT; Morales-García AL; Mukherjee J; Gori K; Hayward AS; Lant NJ; Geoghegan M
    Langmuir; 2019 May; 35(19):6468-6475. PubMed ID: 30995049
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mutualism versus independence: strategies of mixed-species oral biofilms in vitro using saliva as the sole nutrient source.
    Palmer RJ; Kazmerzak K; Hansen MC; Kolenbrander PE
    Infect Immun; 2001 Sep; 69(9):5794-804. PubMed ID: 11500457
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Architecture of a nascent Sphingomonas sp. biofilm under varied hydrodynamic conditions.
    Venugopalan VP; Kuehn M; Hausner M; Springael D; Wilderer PA; Wuertz S
    Appl Environ Microbiol; 2005 May; 71(5):2677-86. PubMed ID: 15870359
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.