These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 19376936)

  • 1. The RNA binding protein ELF9 directly reduces SUPPRESSOR OF OVEREXPRESSION OF CO1 transcript levels in arabidopsis, possibly via nonsense-mediated mRNA decay.
    Song HR; Song JD; Cho JN; Amasino RM; Noh B; Noh YS
    Plant Cell; 2009 Apr; 21(4):1195-211. PubMed ID: 19376936
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bruno-like proteins modulate flowering time via 3' UTR-dependent decay of SOC1 mRNA.
    Kim HS; Abbasi N; Choi SB
    New Phytol; 2013 May; 198(3):747-756. PubMed ID: 23437850
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The SOC1-SPL module integrates photoperiod and gibberellic acid signals to control flowering time in Arabidopsis.
    Jung JH; Ju Y; Seo PJ; Lee JH; Park CM
    Plant J; 2012 Feb; 69(4):577-88. PubMed ID: 21988498
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crosstalk between cold response and flowering in Arabidopsis is mediated through the flowering-time gene SOC1 and its upstream negative regulator FLC.
    Seo E; Lee H; Jeon J; Park H; Kim J; Noh YS; Lee I
    Plant Cell; 2009 Oct; 21(10):3185-97. PubMed ID: 19825833
    [TBL] [Abstract][Full Text] [Related]  

  • 5. FLC, a repressor of flowering, is regulated by genes in different inductive pathways.
    Rouse DT; Sheldon CC; Bagnall DJ; Peacock WJ; Dennis ES
    Plant J; 2002 Jan; 29(2):183-91. PubMed ID: 11851919
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The SOC1 MADS-box gene integrates vernalization and gibberellin signals for flowering in Arabidopsis.
    Moon J; Suh SS; Lee H; Choi KR; Hong CB; Paek NC; Kim SG; Lee I
    Plant J; 2003 Sep; 35(5):613-23. PubMed ID: 12940954
    [TBL] [Abstract][Full Text] [Related]  

  • 7. UPF1 is required for nonsense-mediated mRNA decay (NMD) and RNAi in Arabidopsis.
    Arciga-Reyes L; Wootton L; Kieffer M; Davies B
    Plant J; 2006 Aug; 47(3):480-9. PubMed ID: 16813578
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of SOC1's central role in flowering by the identification of its upstream and downstream regulators.
    Immink RG; Posé D; Ferrario S; Ott F; Kaufmann K; Valentim FL; de Folter S; van der Wal F; van Dijk AD; Schmid M; Angenent GC
    Plant Physiol; 2012 Sep; 160(1):433-49. PubMed ID: 22791302
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genome-wide identification of SOC1 and SVP targets during the floral transition in Arabidopsis.
    Tao Z; Shen L; Liu C; Liu L; Yan Y; Yu H
    Plant J; 2012 May; 70(4):549-61. PubMed ID: 22268548
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direct interaction of AGL24 and SOC1 integrates flowering signals in Arabidopsis.
    Liu C; Chen H; Er HL; Soo HM; Kumar PP; Han JH; Liou YC; Yu H
    Development; 2008 Apr; 135(8):1481-91. PubMed ID: 18339670
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SOC1 translocated to the nucleus by interaction with AGL24 directly regulates leafy.
    Lee J; Oh M; Park H; Lee I
    Plant J; 2008 Sep; 55(5):832-43. PubMed ID: 18466303
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reciprocal regulation of glycine-rich RNA-binding proteins via an interlocked feedback loop coupling alternative splicing to nonsense-mediated decay in Arabidopsis.
    Schöning JC; Streitner C; Meyer IM; Gao Y; Staiger D
    Nucleic Acids Res; 2008 Dec; 36(22):6977-87. PubMed ID: 18987006
    [TBL] [Abstract][Full Text] [Related]  

  • 13. FRIGIDA delays flowering in Arabidopsis via a cotranscriptional mechanism involving direct interaction with the nuclear cap-binding complex.
    Geraldo N; Bäurle I; Kidou S; Hu X; Dean C
    Plant Physiol; 2009 Jul; 150(3):1611-8. PubMed ID: 19429606
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Suppressor of Overexpression of CO 1 Negatively Regulates Dark-Induced Leaf Degreening and Senescence by Directly Repressing Pheophytinase and Other Senescence-Associated Genes in Arabidopsis.
    Chen J; Zhu X; Ren J; Qiu K; Li Z; Xie Z; Gao J; Zhou X; Kuai B
    Plant Physiol; 2017 Mar; 173(3):1881-1891. PubMed ID: 28096189
    [TBL] [Abstract][Full Text] [Related]  

  • 15. AGL24 acts as a promoter of flowering in Arabidopsis and is positively regulated by vernalization.
    Michaels SD; Ditta G; Gustafson-Brown C; Pelaz S; Yanofsky M; Amasino RM
    Plant J; 2003 Mar; 33(5):867-74. PubMed ID: 12609028
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CONSTANS activates SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 through FLOWERING LOCUS T to promote flowering in Arabidopsis.
    Yoo SK; Chung KS; Kim J; Lee JH; Hong SM; Yoo SJ; Yoo SY; Lee JS; Ahn JH
    Plant Physiol; 2005 Oct; 139(2):770-8. PubMed ID: 16183837
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The lba1 mutation of UPF1 RNA helicase involved in nonsense-mediated mRNA decay causes pleiotropic phenotypic changes and altered sugar signalling in Arabidopsis.
    Yoine M; Ohto MA; Onai K; Mita S; Nakamura K
    Plant J; 2006 Jul; 47(1):49-62. PubMed ID: 16740149
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Arabidopsis ABF3 and ABF4 Transcription Factors Act with the NF-YC Complex to Regulate SOC1 Expression and Mediate Drought-Accelerated Flowering.
    Hwang K; Susila H; Nasim Z; Jung JY; Ahn JH
    Mol Plant; 2019 Apr; 12(4):489-505. PubMed ID: 30639313
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Antagonistic interactions between Arabidopsis K-homology domain genes uncover PEPPER as a positive regulator of the central floral repressor FLOWERING LOCUS C.
    Ripoll JJ; Rodríguez-Cazorla E; González-Reig S; Andújar A; Alonso-Cantabrana H; Perez-Amador MA; Carbonell J; Martínez-Laborda A; Vera A
    Dev Biol; 2009 Sep; 333(2):251-62. PubMed ID: 19576878
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integration of flowering signals in winter-annual Arabidopsis.
    Michaels SD; Himelblau E; Kim SY; Schomburg FM; Amasino RM
    Plant Physiol; 2005 Jan; 137(1):149-56. PubMed ID: 15618421
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.