These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
595 related articles for article (PubMed ID: 19377124)
1. Development and testing of a tactile feedback system for robotic surgery. Grundfest WS; Culjat MO; King CH; Franco ML; Wottawa C; Lewis CE; Bisley JW; Dutson EP Stud Health Technol Inform; 2009; 142():103-8. PubMed ID: 19377124 [TBL] [Abstract][Full Text] [Related]
2. An integrated pneumatic tactile feedback actuator array for robotic surgery. Franco ML; King CH; Culjat MO; Lewis CE; Bisley JW; Holmes EC; Grundfest WS; Dutson EP Int J Med Robot; 2009 Mar; 5(1):13-9. PubMed ID: 19086011 [TBL] [Abstract][Full Text] [Related]
3. Optimization of a pneumatic balloon tactile display for robot-assisted surgery based on human perception. King CH; Culjat MO; Franco ML; Bisley JW; Dutson E; Grundfest WS IEEE Trans Biomed Eng; 2008 Nov; 55(11):2593-600. PubMed ID: 18990629 [TBL] [Abstract][Full Text] [Related]
4. A pneumatic haptic feedback actuator array for robotic surgery or simulation. King CH; Higa AT; Culjat MO; Han SH; Bisley JW; Carman GP; Dutson E; Grundfest WS Stud Health Technol Inform; 2007; 125():217-22. PubMed ID: 17377270 [TBL] [Abstract][Full Text] [Related]
5. A tactile feedback system for robotic surgery. Culjat MO; King CH; Franco ML; Lewis CE; Bisley JW; Dutson EP; Grundfest WS Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():1930-4. PubMed ID: 19163068 [TBL] [Abstract][Full Text] [Related]
6. Effect of sensory substitution on suture-manipulation forces for robotic surgical systems. Kitagawa M; Dokko D; Okamura AM; Yuh DD J Thorac Cardiovasc Surg; 2005 Jan; 129(1):151-8. PubMed ID: 15632837 [TBL] [Abstract][Full Text] [Related]
7. Output control of da Vinci surgical system's surgical graspers. Johnson PJ; Schmidt DE; Duvvuri U J Surg Res; 2014 Jan; 186(1):56-62. PubMed ID: 23968806 [TBL] [Abstract][Full Text] [Related]
8. Mechatronic design of haptic forceps for robotic surgery. Rizun P; Gunn D; Cox B; Sutherland G Int J Med Robot; 2006 Dec; 2(4):341-9. PubMed ID: 17520653 [TBL] [Abstract][Full Text] [Related]
9. Adapter for contact force sensing of the da Vinci robot. Shimachi S; Hirunyanitiwatna S; Fujiwara Y; Hashimoto A; Hakozaki Y Int J Med Robot; 2008 Jun; 4(2):121-30. PubMed ID: 18382995 [TBL] [Abstract][Full Text] [Related]
10. [Robotic-assisted operations in digestive and endocrine surgery using Da Vinci system]. Bresler L Ann Chir; 2006 May; 131(5):299-301. PubMed ID: 16630532 [No Abstract] [Full Text] [Related]
11. A haptic feedback system for lower-limb prostheses. Fan RE; Culjat MO; King CH; Franco ML; Boryk R; Bisley JW; Dutson E; Grundfest WS IEEE Trans Neural Syst Rehabil Eng; 2008 Jun; 16(3):270-7. PubMed ID: 18586606 [TBL] [Abstract][Full Text] [Related]
12. Multi-sensory surgical support system incorporating, tactile, visual and auditory perception modalities. Omata S; Murayama Y; Constantinou CE Stud Health Technol Inform; 2005; 111():369-71. PubMed ID: 15718762 [TBL] [Abstract][Full Text] [Related]
13. Technical review of the da Vinci surgical telemanipulator. Freschi C; Ferrari V; Melfi F; Ferrari M; Mosca F; Cuschieri A Int J Med Robot; 2013 Dec; 9(4):396-406. PubMed ID: 23166047 [TBL] [Abstract][Full Text] [Related]
14. Technological advances in robotic-assisted laparoscopic surgery. Tan GY; Goel RK; Kaouk JH; Tewari AK Urol Clin North Am; 2009 May; 36(2):237-49, ix. PubMed ID: 19406324 [TBL] [Abstract][Full Text] [Related]
15. Development of a force-reflecting robotic platform for cardiac catheter navigation. Park JW; Choi J; Pak HN; Song SJ; Lee JC; Park Y; Shin SM; Sun K Artif Organs; 2010 Nov; 34(11):1034-9. PubMed ID: 21092046 [TBL] [Abstract][Full Text] [Related]
16. Advanced da Vinci Surgical System simulator for surgeon training and operation planning. Sun LW; Van Meer F; Schmid J; Bailly Y; Thakre AA; Yeung CK Int J Med Robot; 2007 Sep; 3(3):245-51. PubMed ID: 17576641 [TBL] [Abstract][Full Text] [Related]
17. [Present and future developments of the virtual surgery and tele-virtual surgery system]. Suzuki S; Suzuki N; Hattori A; Hayashibe M; Otake Y; Kobayashi S; Hashizume M Nihon Rinsho; 2004 Apr; 62(4):815-23. PubMed ID: 15106354 [TBL] [Abstract][Full Text] [Related]
18. Preoperative planning system for surgical robotics setup with kinematics and haptics. Hayashibe M; Suzuki N; Hashizume M; Kakeji Y; Konishi K; Suzuki S; Hattori A Int J Med Robot; 2005 Jan; 1(2):76-85. PubMed ID: 17518381 [TBL] [Abstract][Full Text] [Related]
19. Adaptation of a hexapod-based robotic system for extended endoscope-assisted transsphenoidal skull base surgery. Nimsky Ch; Rachinger J; Iro H; Fahlbusch R Minim Invasive Neurosurg; 2004 Feb; 47(1):41-6. PubMed ID: 15100931 [TBL] [Abstract][Full Text] [Related]
20. Effect of sensory substitution on suture manipulation forces for surgical teleoperation. Kitagawa M; Dokko D; Okamura AM; Bethea BT; Yuh DD Stud Health Technol Inform; 2004; 98():157-63. PubMed ID: 15544263 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]