BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 19377569)

  • 1. White light oblique incidence reflectometer formeasuring absorption and reduced scatteringspectra of tissue-like turbid media.
    Marquez G; Wang L
    Opt Express; 1997 Dec; 1(13):454-60. PubMed ID: 19377569
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Anisotropy in the absorption and scattering spectra of chicken breast tissue.
    Marquez G; Wang LV; Lin SP; Schwartz JA; Thomsen SL
    Appl Opt; 1998 Feb; 37(4):798-804. PubMed ID: 18268655
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Measurement of tissue optical properties by the use of oblique-incidence optical fiber reflectometry.
    Lin SP; Wang L; Jacques SL; Tittel FK
    Appl Opt; 1997 Jan; 36(1):136-43. PubMed ID: 18250654
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Study on the Determination System of Tissue Optical Properties Based on Diffuse Reflectance Spectrum].
    Li CX; Sun Z; Han L; Zhao HJ; Xu KX
    Guang Pu Xue Yu Guang Pu Fen Xi; 2016 May; 36(5):1532-6. PubMed ID: 30001058
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Broadband absorption spectroscopy of turbid media using a dual step steady-state method.
    Foschum F; Kienle A
    J Biomed Opt; 2012 Mar; 17(3):037009. PubMed ID: 22502581
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantifying the absorption and reduced scattering coefficients of tissuelike turbid media over a broad spectral range with noncontact Fourier-transform hyperspectral imaging.
    Pham TH; Bevilacqua F; Spott T; Dam JS; Tromberg BJ; Andersson-Engels S
    Appl Opt; 2000 Dec; 39(34):6487-97. PubMed ID: 18354662
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Artificial neural networks for retrieving absorption and reduced scattering spectra from frequency-domain diffuse reflectance spectroscopy at short source-detector separation.
    Chen YW; Chen CC; Huang PJ; Tseng SH
    Biomed Opt Express; 2016 Apr; 7(4):1496-510. PubMed ID: 27446671
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Use of a laser beam with an oblique angle of incidence to measure the reduced scattering coefficient of a turbid medium.
    Wang L; Jacques SL
    Appl Opt; 1995 May; 34(13):2362-6. PubMed ID: 21037790
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oblique incidence reflectometry: optical models and measurements using a side-viewing gradient index lens-based endoscopic imaging system.
    Wall RA; Barton JK
    J Biomed Opt; 2014 Jun; 19(6):067002. PubMed ID: 24892970
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Broadband absorption spectroscopy in turbid media by combined frequency-domain and steady-state methods.
    Bevilacqua F; Berger AJ; Cerussi AE; Jakubowski D; Tromberg BJ
    Appl Opt; 2000 Dec; 39(34):6498-507. PubMed ID: 18354663
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An integrated fiber-optic probe combined with support vector regression for fast estimation of optical properties of turbid media.
    Zhou Y; Fu X; Ying Y; Fang Z
    Anal Chim Acta; 2015 Jun; 880():122-9. PubMed ID: 26092344
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Robust metamodel-based inverse estimation of bulk optical properties of turbid media from spatially resolved diffuse reflectance measurements.
    Watté R; Aernouts B; Van Beers R; Saeys W
    Opt Express; 2015 Oct; 23(21):27880-98. PubMed ID: 26480447
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Light distribution modulated diffuse reflectance spectroscopy.
    Huang PY; Chien CY; Sheu CR; Chen YW; Tseng SH
    Biomed Opt Express; 2016 Jun; 7(6):2118-29. PubMed ID: 27375931
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of mechanical indentation on diffuse reflectance spectra, light transmission, and intrinsic optical properties in ex vivo porcine skin.
    Vogt WC; Izquierdo-Román A; Nichols B; Lim L; Tunnell JW; Rylander CG
    Lasers Surg Med; 2012 Apr; 44(4):303-9. PubMed ID: 22419501
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of a fiberoptic-based system for measurement of optical properties in highly attenuating turbid media.
    Sharma D; Agrawal A; Matchette LS; Pfefer TJ
    Biomed Eng Online; 2006 Aug; 5():49. PubMed ID: 16928274
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Particle size analysis of turbid media with a single optical fiber in contact with the medium to deliver and detect white light.
    Canpolat M; Mourant JR
    Appl Opt; 2001 Aug; 40(22):3792-9. PubMed ID: 18360413
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Time and wavelength resolved spectroscopy of turbid media using light continuum generated in a crystal fiber.
    Abrahamsson C; Svensson T; Svanberg S; Andersson-Engels S; Johansson J; Folestad S
    Opt Express; 2004 Aug; 12(17):4103-12. PubMed ID: 19483952
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fully automated spatially resolved reflectance spectrometer for the determination of the absorption and scattering in turbid media.
    Foschum F; Jäger M; Kienle A
    Rev Sci Instrum; 2011 Oct; 82(10):103104. PubMed ID: 22047277
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Noninvasive measurement of fluorophore concentration in turbid media with a simple fluorescence /reflectance ratio technique.
    Weersink R; Patterson MS; Diamond K; Silver S; Padgett N
    Appl Opt; 2001 Dec; 40(34):6389-95. PubMed ID: 18364948
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultrasound-modulated optical tomography of absorbing objects buried in dense tissue-simulating turbid media.
    Wang L; Zhao X
    Appl Opt; 1997 Oct; 36(28):7277-82. PubMed ID: 18264237
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.