These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 19377577)

  • 1. Remote sensing of multi-level wind fields with high-energy airborne scanning coherent Doppler lidar.
    Rothermel J; Olivier L; Banta R; Hardesty RM; Howell J; Cutten D; Johnson S; Menzies R; Tratt DM
    Opt Express; 1998 Jan; 2(2):40-50. PubMed ID: 19377577
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Airborne CO(2) coherent lidar for measurements of atmospheric aerosol and cloud backscatter.
    Menzies RT; Tratt DM
    Appl Opt; 1994 Aug; 33(24):5698-711. PubMed ID: 20935971
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Doppler lidar atmospheric wind sensor: reevaluation of a 355-nm incoherent Doppler lidar.
    Rees D; McDermid IS
    Appl Opt; 1990 Oct; 29(28):4133-44. PubMed ID: 20577356
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lidar aerosol backscatter cross sections in the 2-νm near-infrared wavelength region.
    Chudamani S; Spinhirne JD; Clarke AD
    Appl Opt; 1996 Aug; 35(24):4812-9. PubMed ID: 21102906
    [TBL] [Abstract][Full Text] [Related]  

  • 5. New airborne scanning lidar system: applications for atmospheric remote sensing.
    Palm SP; Melfi SH; Carter DL
    Appl Opt; 1994 Aug; 33(24):5674-81. PubMed ID: 20935968
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coherent Doppler lidar signal covariance including wind shear and wind turbulence.
    Frehlich R
    Appl Opt; 1994 Sep; 33(27):6472-81. PubMed ID: 20941185
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coherent launch-site atmospheric wind sounder: theory and experiment.
    Hawley JG; Targ R; Henderson SW; Hale CP; Kavaya MJ; Moerder D
    Appl Opt; 1993 Aug; 32(24):4557-68. PubMed ID: 20830118
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vertical variability of aerosol backscatter from an airborne-focused continuous-wave CO2 lidar at 9.1-microm wavelength.
    Jarzembski MA; Srivastava V; Rothermel J
    Appl Opt; 1999 Feb; 38(6):908-15. PubMed ID: 18305690
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Signal processing and calibration of continuous-wave focused CO(2) Doppler lidars for atmospheric backscatter measurement.
    Rothermel J; Chambers DM; Jarzembski MA; Srivastava V; Bowdle DA; Jones WD
    Appl Opt; 1996 Apr; 35(12):2083-95. PubMed ID: 21085337
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Estimation of the turbulence energy dissipation rate in the atmospheric boundary layer from measurements of the radial wind velocity by micropulse coherent Doppler lidar.
    Banakh VA; Smalikho IN; Falits AV
    Opt Express; 2017 Sep; 25(19):22679-22692. PubMed ID: 29041575
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Denoising coherent Doppler lidar data based on a U-Net convolutional neural network.
    Song Y; Han Y; Su Z; Chen C; Sun D; Chen T; Xue X
    Appl Opt; 2024 Jan; 63(1):275-282. PubMed ID: 38175030
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Future Performance of Ground-Based and Airborne Water-Vapor Differential Absorption Lidar. II. Simulations of the Precision of a Near-Infrared, High-Power System.
    Wulfmeyer V; Walther C
    Appl Opt; 2001 Oct; 40(30):5321-36. PubMed ID: 18364812
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Observations of winds with an incoherent lidar detector.
    Abreu VJ; Barnes JE; Hays PB
    Appl Opt; 1992 Aug; 31(22):4509-14. PubMed ID: 20725450
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Special relativity corrections for space-based lidars.
    Gudimetla VS; Kavaya MJ
    Appl Opt; 1999 Oct; 38(30):6374-82. PubMed ID: 18324167
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Low-altitude atmospheric wind measurement from the combined Mie and Rayleigh backscattering by Doppler lidar with an iodine filter.
    Liu ZS; Wu D; Liu JT; Zhang KL; Chen WB; Song XQ; Hair JW; She CY
    Appl Opt; 2002 Nov; 41(33):7079-86. PubMed ID: 12463255
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultraviolet high-spectral-resolution Doppler lidar for measuring wind field and aerosol optical properties.
    Imaki M; Kobayashi T
    Appl Opt; 2005 Oct; 44(28):6023-30. PubMed ID: 16231810
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impact of atmospheric boundary layer depth variability and wind reversal on the diurnal variability of aerosol concentration at a valley site.
    Pal S; Lee TR; Phelps S; De Wekker SFJ
    Sci Total Environ; 2014 Oct; 496():424-434. PubMed ID: 25105753
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A three-beam aerosol backscatter correlation lidar for wind profiling.
    Prasad NS; Mylapore AR
    Opt Eng; 2017 Mar; 56(3):. PubMed ID: 33005063
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lidar determination of winds by aerosol inhomogeneities: motion velocity in the planetary boundary layer.
    Kolev I; Parvanov O; Kaprielov B
    Appl Opt; 1988 Jun; 27(12):2524-31. PubMed ID: 20531786
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vertical wind velocity measurements by a Doppler lidar and comparisons with a Doppler sodar.
    Congeduti F; Fiocco G; Adriani A; Guarrella C
    Appl Opt; 1981 Jun; 20(12):2048-54. PubMed ID: 20332885
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.