These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 19377592)

  • 21. Multiple exciton generation and recombination in carbon nanotubes and nanocrystals.
    Kanemitsu Y
    Acc Chem Res; 2013 Jun; 46(6):1358-66. PubMed ID: 23421584
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Multiple exciton generation in cluster-free alloy Cd(x)Hg(1-x)Te colloidal quantum dots synthesized in water.
    Kershaw SV; Kalytchuk S; Zhovtiuk O; Shen Q; Oshima T; Yindeesuk W; Toyoda T; Rogach AL
    Phys Chem Chem Phys; 2014 Dec; 16(47):25710-22. PubMed ID: 24931359
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Observation of the Transition from Lasing Driven by a Bosonic to a Fermionic Reservoir in a GaAs Quantum Well Microcavity.
    Brodbeck S; Suchomel H; Amthor M; Steinl T; Kamp M; Schneider C; Höfling S
    Phys Rev Lett; 2016 Sep; 117(12):127401. PubMed ID: 27689297
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Quantum Hall effect from the topological surface states of strained bulk HgTe.
    Brüne C; Liu CX; Novik EG; Hankiewicz EM; Buhmann H; Chen YL; Qi XL; Shen ZX; Zhang SC; Molenkamp LW
    Phys Rev Lett; 2011 Mar; 106(12):126803. PubMed ID: 21517339
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Synthesis of colloidal HgTe quantum dots for narrow mid-IR emission and detection.
    Keuleyan S; Lhuillier E; Guyot-Sionnest P
    J Am Chem Soc; 2011 Oct; 133(41):16422-4. PubMed ID: 21942339
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mid-IR lasing in HgCdTe multiple quantum well edge-emitting ridges.
    Utochkin V; Kudryavtsev K; Rumyantsev V; Fadeev M; Razova A; Mikhailov N; Shengurov D; Gusev S; Gusev N; Morozov S
    Appl Opt; 2023 Nov; 62(32):8529-8534. PubMed ID: 38037965
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Design of a Si-based lattice-matched room-temperature GeSn/GeSiSn multi-quantum-well mid-infrared laser diode.
    Sun G; Soref RA; Cheng HH
    Opt Express; 2010 Sep; 18(19):19957-65. PubMed ID: 20940887
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Lasing from individual GaAs-AlGaAs core-shell nanowires up to room temperature.
    Mayer B; Rudolph D; Schnell J; Morkötter S; Winnerl J; Treu J; Müller K; Bracher G; Abstreiter G; Koblmüller G; Finley JJ
    Nat Commun; 2013; 4():2931. PubMed ID: 24304714
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mid-infrared vertical-cavity surface-emitting lasers for chemical sensing.
    Bewley WW; Felix CL; Vurgaftman I; Aifer EH; Olafsen LJ; Meyer JR; Goldberg L; Chow DH
    Appl Opt; 1999 Mar; 38(9):1502-5. PubMed ID: 18305773
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Low-threshold lasing from colloidal CdSe/CdSeTe core/alloyed-crown type-II heteronanoplatelets.
    Gao Y; Li M; Delikanli S; Zheng H; Liu B; Dang C; Sum TC; Demir HV
    Nanoscale; 2018 May; 10(20):9466-9475. PubMed ID: 29767210
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Overcoming Auger recombination in nanocrystal quantum dot laser using spontaneous emission enhancement.
    Gupta S; Waks E
    Opt Express; 2014 Feb; 22(3):3013-27. PubMed ID: 24663592
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cyclotron resonance in HgTe/CdTe-based heterostructures in high magnetic fields.
    Zholudev MS; Ikonnikov AV; Teppe F; Orlita M; Maremyanin KV; Spirin KE; Gavrilenko VI; Knap W; Dvoretskiy SA; Mihailov NN
    Nanoscale Res Lett; 2012 Sep; 7(1):534. PubMed ID: 23013642
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Crafting Core/Graded Shell-Shell Quantum Dots with Suppressed Re-absorption and Tunable Stokes Shift as High Optical Gain Materials.
    Jung J; Lin CH; Yoon YJ; Malak ST; Zhai Y; Thomas EL; Vardeny V; Tsukruk VV; Lin Z
    Angew Chem Int Ed Engl; 2016 Apr; 55(16):5071-5. PubMed ID: 26990250
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Impact of D2O/H2O Solvent Exchange on the Emission of HgTe and CdTe Quantum Dots: Polaron and Energy Transfer Effects.
    Wen Q; Kershaw SV; Kalytchuk S; Zhovtiuk O; Reckmeier C; Vasilevskiy MI; Rogach AL
    ACS Nano; 2016 Apr; 10(4):4301-11. PubMed ID: 26958866
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Lasing characteristics of InAs quantum dot microcavity lasers as a function of temperature and wavelength.
    Yang T; Mock A; O'Brien JD; Lipson S; Deppe DG
    Opt Express; 2007 Jun; 15(12):7281-9. PubMed ID: 19547051
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Intrinsic stability of quantum cascade lasers against optical feedback.
    Mezzapesa FP; Columbo LL; Brambilla M; Dabbicco M; Borri S; Vitiello MS; Beere HE; Ritchie DA; Scamarcio G
    Opt Express; 2013 Jun; 21(11):13748-57. PubMed ID: 23736628
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Temperature gradient driven lasing and stimulated cooling.
    Sandner K; Ritsch H
    Phys Rev Lett; 2012 Nov; 109(19):193601. PubMed ID: 23215382
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Thiolate-assisted cation exchange reaction for the synthesis of near-infrared photoluminescent Hg(x)Cd(1-x)Te nanocrystals.
    Wang H; Lou S; Tang Z; Xu W; Shang H; Shen H; Li LS
    Dalton Trans; 2012 Nov; 41(41):12726-32. PubMed ID: 22968476
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Temperature-Induced Topological Phase Transition in HgTe Quantum Wells.
    Kadykov AM; Krishtopenko SS; Jouault B; Desrat W; Knap W; Ruffenach S; Consejo C; Torres J; Morozov SV; Mikhailov NN; Dvoretskii SA; Teppe F
    Phys Rev Lett; 2018 Feb; 120(8):086401. PubMed ID: 29543000
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Reversible Electrochemistry of Mercury Chalcogenide Colloidal Quantum Dot Films.
    Chen M; Guyot-Sionnest P
    ACS Nano; 2017 Apr; 11(4):4165-4173. PubMed ID: 28314094
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.