These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 19377671)

  • 1. Large scale highly crystalline Bi2Te3 nanotubes through solution phase nanoscale Kirkendall effect fabrication.
    Zhang G; Yu Q; Yao Z; Li X
    Chem Commun (Camb); 2009 May; (17):2317-9. PubMed ID: 19377671
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Monocrystalline spinel nanotube fabrication based on the Kirkendall effect.
    Jin Fan H; Knez M; Scholz R; Nielsch K; Pippel E; Hesse D; Zacharias M; Gösele U
    Nat Mater; 2006 Aug; 5(8):627-31. PubMed ID: 16845423
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Formation of nanotubes and hollow nanoparticles based on Kirkendall and diffusion processes: a review.
    Fan HJ; Gösele U; Zacharias M
    Small; 2007 Oct; 3(10):1660-71. PubMed ID: 17890644
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydrothermal fabrication and characterization of polycrystalline linneite (Co(3)S(4)) nanotubes based on the Kirkendall effect.
    Chen X; Zhang Z; Qiu Z; Shi C; Li X
    J Colloid Interface Sci; 2007 Apr; 308(1):271-5. PubMed ID: 17215001
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Epitaxial growth of shape-controlled Bi2Te3-Te heterogeneous nanostructures.
    Wang W; Goebl J; He L; Aloni S; Hu Y; Zhen L; Yin Y
    J Am Chem Soc; 2010 Dec; 132(48):17316-24. PubMed ID: 21080672
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Formation of Ag2Se nanotubes and dendrite-like structures from UV irradiation of a CSe2/Ag colloidal solution.
    Ng CH; Tan H; Fan WY
    Langmuir; 2006 Nov; 22(23):9712-7. PubMed ID: 17073501
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly ordered hollow oxide nanostructures: the Kirkendall effect at the nanoscale.
    El Mel AA; Buffière M; Tessier PY; Konstantinidis S; Xu W; Du K; Wathuthanthri I; Choi CH; Bittencourt C; Snyders R
    Small; 2013 Sep; 9(17):2838-43. PubMed ID: 23440974
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Morphological Control of Bi2Te3 Nanotubes and Their Thermoelectric Properties.
    Kim HY; Han MK; Kim SJ
    J Nanosci Nanotechnol; 2015 Aug; 15(8):6044-7. PubMed ID: 26369195
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structures of stable and metastable Ge2Bi2Te5, an intermetallic compound in a GeTe-Bi2Te3 pseudobinary system.
    Matsunaga T; Kojima R; Yamada N; Kifune K; Kubota Y; Takata M
    Acta Crystallogr B; 2007 Jun; 63(Pt 3):346-52. PubMed ID: 17507746
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Formation of hollow nanocrystals through the nanoscale Kirkendall effect.
    Yin Y; Rioux RM; Erdonmez CK; Hughes S; Somorjai GA; Alivisatos AP
    Science; 2004 Apr; 304(5671):711-4. PubMed ID: 15118156
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Template-free fabrication of Bi2O3 and (BiO)2CO3 nanotubes and their application in water treatment.
    Qin F; Li G; Wang R; Wu J; Sun H; Chen R
    Chemistry; 2012 Dec; 18(51):16491-7. PubMed ID: 23090876
    [TBL] [Abstract][Full Text] [Related]  

  • 12. One-pot, large-scale synthesis of SnO2 nanotubes at room temperature.
    Du N; Zhang H; Chen B; Ma X; Yang D
    Chem Commun (Camb); 2008 Jul; (26):3028-30. PubMed ID: 18688337
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kirkendall approach to the fabrication of ultra-thin ZnO nanotubes with high resistive sensitivity to humidity.
    Qiu Y; Yang S
    Nanotechnology; 2008 Jul; 19(26):265606. PubMed ID: 21828687
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Solution-based growth and structural characterization of homo- and heterobranched semiconductor nanowires.
    Dong A; Tang R; Buhro WE
    J Am Chem Soc; 2007 Oct; 129(40):12254-62. PubMed ID: 17880075
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Solution-phase synthesis of single-crystalline magnetic nanowires with high aspect ratio and uniformity.
    Huang Z; Zhang Y; Tang F
    Chem Commun (Camb); 2005 Jan; (3):342-4. PubMed ID: 15645031
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modified Kirkendall effect for fabrication of magnetic nanotubes.
    Wang Q; Geng B; Wang S; Ye Y; Tao B
    Chem Commun (Camb); 2010 Mar; 46(11):1899-901. PubMed ID: 20198246
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Formation of hollow Ni2p nanoparticles based on the nanoscale Kirkendall effect.
    Chiang RK; Chiang RT
    Inorg Chem; 2007 Jan; 46(2):369-71. PubMed ID: 17279811
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hollow Silicon Nanostructures via the Kirkendall Effect.
    Son Y; Son Y; Choi M; Ko M; Chae S; Park N; Cho J
    Nano Lett; 2015 Oct; 15(10):6914-8. PubMed ID: 26340592
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Solution-phase synthesis of inorganic hollow structures by templating strategies.
    Ma Y; Qi L
    J Colloid Interface Sci; 2009 Jul; 335(1):1-10. PubMed ID: 19394632
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Control of phase in phosphide nanoparticles produced by metal nanoparticle transformation: Fe2P and FeP.
    Muthuswamy E; Kharel PR; Lawes G; Brock SL
    ACS Nano; 2009 Aug; 3(8):2383-93. PubMed ID: 19653639
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.