These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 19378109)

  • 1. Live cell imaging of zebrafish leukocytes.
    Hall C; Flores MV; Crosier K; Crosier P
    Methods Mol Biol; 2009; 546():255-71. PubMed ID: 19378109
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Morphologic analysis of the zebrafish digestive system.
    Trotter AJ; Parslow AC; Heath JK
    Methods Mol Biol; 2009; 546():289-315. PubMed ID: 19378111
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transgenic zebrafish reporter lines reveal conserved Toll-like receptor signaling potential in embryonic myeloid leukocytes and adult immune cell lineages.
    Hall C; Flores MV; Chien A; Davidson A; Crosier K; Crosier P
    J Leukoc Biol; 2009 May; 85(5):751-65. PubMed ID: 19218482
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Imaging zebrafish embryos by two-photon excitation time-lapse microscopy.
    Carvalho L; Heisenberg CP
    Methods Mol Biol; 2009; 546():273-87. PubMed ID: 19378110
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of WASp function during the wound inflammatory response--live-imaging studies in zebrafish larvae.
    Cvejic A; Hall C; Bak-Maier M; Flores MV; Crosier P; Redd MJ; Martin P
    J Cell Sci; 2008 Oct; 121(Pt 19):3196-206. PubMed ID: 18782862
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cells segmentation from 3-D confocal images of early zebrafish embryogenesis.
    Zanella C; Campana M; Rizzi B; Melani C; Sanguinetti G; Bourgine P; Mikula K; Peyrieras N; Sarti A
    IEEE Trans Image Process; 2010 Mar; 19(3):770-81. PubMed ID: 19955038
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neutrophil motility in vivo using zebrafish.
    Mathias JR; Walters KB; Huttenlocher A
    Methods Mol Biol; 2009; 571():151-66. PubMed ID: 19763965
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification and real-time imaging of a myc-expressing neutrophil population involved in inflammation and mycobacterial granuloma formation in zebrafish.
    Meijer AH; van der Sar AM; Cunha C; Lamers GE; Laplante MA; Kikuta H; Bitter W; Becker TS; Spaink HP
    Dev Comp Immunol; 2008; 32(1):36-49. PubMed ID: 17553562
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Resolution of inflammation by retrograde chemotaxis of neutrophils in transgenic zebrafish.
    Mathias JR; Perrin BJ; Liu TX; Kanki J; Look AT; Huttenlocher A
    J Leukoc Biol; 2006 Dec; 80(6):1281-8. PubMed ID: 16963624
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vivo real-time visualization of leukocytes and intracellular hydrogen peroxide levels during a zebrafish acute inflammation assay.
    Pase L; Nowell CJ; Lieschke GJ
    Methods Enzymol; 2012; 506():135-56. PubMed ID: 22341223
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Infectious disease modeling and innate immune function in zebrafish embryos.
    Cui C; Benard EL; Kanwal Z; Stockhammer OW; van der Vaart M; Zakrzewska A; Spaink HP; Meijer AH
    Methods Cell Biol; 2011; 105():273-308. PubMed ID: 21951535
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computational quantification of fluorescent leukocyte numbers in zebrafish embryos.
    Ellett F; Lieschke GJ
    Methods Enzymol; 2012; 506():425-35. PubMed ID: 22341237
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computer-aided meiotic maturation assay (CAMMA) of zebrafish (danio rerio) oocytes in vitro.
    Lessman CA; Nathani R; Uddin R; Walker J; Liu J
    Mol Reprod Dev; 2007 Jan; 74(1):97-107. PubMed ID: 16998847
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rhythmic patterns in phagocytosis and the production of reactive oxygen species by zebrafish leukocytes.
    Kaplan JE; Chrenek RD; Morash JG; Ruksznis CM; Hannum LG
    Comp Biochem Physiol A Mol Integr Physiol; 2008 Dec; 151(4):726-30. PubMed ID: 18793741
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiple types of calcium signals are associated with cell division in zebrafish embryo.
    Chang DC; Lu P
    Microsc Res Tech; 2000 Apr; 49(2):111-22. PubMed ID: 10816249
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Immunology and zebrafish: spawning new models of human disease.
    Meeker ND; Trede NS
    Dev Comp Immunol; 2008; 32(7):745-57. PubMed ID: 18222541
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Zebrafish and frog models of Mycobacterium marinum infection.
    Cosma CL; Swaim LE; Volkman H; Ramakrishnan L; Davis JM
    Curr Protoc Microbiol; 2006 Dec; Chapter 10():Unit 10B.2. PubMed ID: 18770575
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fluorescence-activated cell sorting (FACS) of whole mount in situ hybridization (WISH) labelled haematopoietic cell populations in the zebrafish.
    Dobson JT; Da'as S; McBride ER; Berman JN
    Br J Haematol; 2009 Mar; 144(5):732-5. PubMed ID: 19133983
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transcriptome profiling and functional analyses of the zebrafish embryonic innate immune response to Salmonella infection.
    Stockhammer OW; Zakrzewska A; Hegedûs Z; Spaink HP; Meijer AH
    J Immunol; 2009 May; 182(9):5641-53. PubMed ID: 19380811
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Specificity of the zebrafish host transcriptome response to acute and chronic mycobacterial infection and the role of innate and adaptive immune components.
    van der Sar AM; Spaink HP; Zakrzewska A; Bitter W; Meijer AH
    Mol Immunol; 2009 Jul; 46(11-12):2317-32. PubMed ID: 19409617
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.