These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Footprinting: a method for determining the sequence selectivity, affinity and kinetics of DNA-binding ligands. Hampshire AJ; Rusling DA; Broughton-Head VJ; Fox KR Methods; 2007 Jun; 42(2):128-40. PubMed ID: 17472895 [TBL] [Abstract][Full Text] [Related]
6. DNase I footprinting. Cardew AS; Fox KR Methods Mol Biol; 2010; 613():153-72. PubMed ID: 19997883 [TBL] [Abstract][Full Text] [Related]
7. DNase I and hydroxyl radical characterization of chromatin complexes. Vitolo JM; Thiriet C; Hayes JJ Curr Protoc Mol Biol; 2001 May; Chapter 21():Unit 21.4. PubMed ID: 18265196 [TBL] [Abstract][Full Text] [Related]
8. Hydroxyl radical footprinting of DNA complexes of the ets domain of PU.1 and its comparison to the crystal structure. Gross P; Arrowsmith CH; Macgregor RB Biochemistry; 1998 Apr; 37(15):5129-35. PubMed ID: 9548743 [TBL] [Abstract][Full Text] [Related]
9. Exonuclease III footprinting on immobilized DNA templates. Spitalny P; Thomm M Methods Mol Biol; 2009; 543():49-56. PubMed ID: 19378158 [TBL] [Abstract][Full Text] [Related]
12. Time-resolved hydroxyl-radical footprinting of RNA using Fe(II)-EDTA. Hampel KJ; Burke JM Methods; 2001 Mar; 23(3):233-9. PubMed ID: 11243836 [TBL] [Abstract][Full Text] [Related]
13. Structural interpretation of DNA-protein hydroxyl-radical footprinting experiments with high resolution using HYDROID. Shaytan AK; Xiao H; Armeev GA; Gaykalova DA; Komarova GA; Wu C; Studitsky VM; Landsman D; Panchenko AR Nat Protoc; 2018 Nov; 13(11):2535-2556. PubMed ID: 30341436 [TBL] [Abstract][Full Text] [Related]
14. DNA triple-helix formation on nucleosome-bound poly(dA).poly(dT) tracts. Brown PM; Fox KR Biochem J; 1998 Jul; 333 ( Pt 2)(Pt 2):259-67. PubMed ID: 9657964 [TBL] [Abstract][Full Text] [Related]
15. Time-resolved footprinting for the study of the structural dynamics of DNA-protein interactions. Sclavi B Biochem Soc Trans; 2008 Aug; 36(Pt 4):745-8. PubMed ID: 18631151 [TBL] [Abstract][Full Text] [Related]
16. DNA sequence recognition by a novel series of minor groove-binding ligands. Fox KR; Yan Y; Gong B Anticancer Drug Des; 1999 Jun; 14(3):219-30. PubMed ID: 10500497 [TBL] [Abstract][Full Text] [Related]
17. Anti-cruciform monoclonal antibody and cruciform DNA interaction. Steinmetzer K; Zannis-Hadjopoulos M; Price GB J Mol Biol; 1995 Nov; 254(1):29-37. PubMed ID: 7473756 [TBL] [Abstract][Full Text] [Related]
18. Characterization of a Tn5 pre-cleavage synaptic complex. Bhasin A; Goryshin IY; Steiniger-White M; York D; Reznikoff WS J Mol Biol; 2000 Sep; 302(1):49-63. PubMed ID: 10964560 [TBL] [Abstract][Full Text] [Related]
19. In cellulo DNA analysis (LMPCR footprinting). Drouin R; Bastien N; Millau JF; Vigneault F; Paradis I Methods Mol Biol; 2009; 543():293-336. PubMed ID: 19378174 [TBL] [Abstract][Full Text] [Related]
20. A detailed interpretation of OH radical footprints in a TBP-DNA complex reveals the role of dynamics in the mechanism of sequence-specific binding. Pastor N; Weinstein H; Jamison E; Brenowitz M J Mol Biol; 2000 Nov; 304(1):55-68. PubMed ID: 11071810 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]