These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 19378185)

  • 1. The cruciform DNA mobility shift assay: a tool to study proteins that recognize bent DNA.
    Stefanovsky VY; Moss T
    Methods Mol Biol; 2009; 543():537-46. PubMed ID: 19378185
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Cruciform DNA Mobility Shift Assay: A Tool to Study Proteins That Recognize Bent DNA.
    Stefanovsky VY; Moss T
    Methods Mol Biol; 2015; 1334():195-203. PubMed ID: 26404151
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Standard in vitro assays for protein-nucleic acid interactions--gel shift assays for RNA and DNA binding.
    Mitchell SF; Lorsch JR
    Methods Enzymol; 2014; 541():179-96. PubMed ID: 24674072
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preferential binding of IFI16 protein to cruciform structure and superhelical DNA.
    Brázda V; Coufal J; Liao JC; Arrowsmith CH
    Biochem Biophys Res Commun; 2012 Jun; 422(4):716-20. PubMed ID: 22618232
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrophoretic mobility-shift assays.
    Carey MF; Peterson CL; Smale ST
    Cold Spring Harb Protoc; 2013 Jul; 2013(7):636-9. PubMed ID: 23818676
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interactions between N- and C-terminal domains of the Saccharomyces cerevisiae high-mobility group protein HMO1 are required for DNA bending.
    Bauerle KT; Kamau E; Grove A
    Biochemistry; 2006 Mar; 45(11):3635-45. PubMed ID: 16533046
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis of linked triple helical DNAs possessing high affinity to triple helical DNA binding protein.
    Shibata A; Ueno Y; Shinbo K; Nakanishi M; Matsuda A; Kitade Y
    Bioorg Med Chem Lett; 2006 Mar; 16(5):1410-3. PubMed ID: 16332436
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Superhelical DNA as a preferential binding target of 14-3-3γ protein.
    Brázda V; Cechová J; Coufal J; Rumpel S; Jagelská EB
    J Biomol Struct Dyn; 2012; 30(4):371-8. PubMed ID: 22856523
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fluorescence-based electrophoretic mobility shift assay in the analysis of DNA-binding proteins.
    Steiner S; Pfannschmidt T
    Methods Mol Biol; 2009; 479():273-89. PubMed ID: 19083181
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modular bent DNAs: a new class of artificial DNAs with a protein binding ability.
    Murata S; Mizumura Y; Hino K; Ueno Y; Ichikawa S; Matsuda A
    J Am Chem Soc; 2007 Aug; 129(34):10300-1. PubMed ID: 17672453
    [No Abstract]   [Full Text] [Related]  

  • 11. Strand selection by the tyrosine recombinases.
    Lee L; Sadowski PD
    Prog Nucleic Acid Res Mol Biol; 2005; 80():1-42. PubMed ID: 16164971
    [No Abstract]   [Full Text] [Related]  

  • 12. Interplay between human high mobility group protein 1 and replication protein A on psoralen-cross-linked DNA.
    Reddy MC; Christensen J; Vasquez KM
    Biochemistry; 2005 Mar; 44(11):4188-95. PubMed ID: 15766246
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrophoretic mobility shift assays for the analysis of DNA-protein interactions.
    Gaudreault M; Gingras ME; Lessard M; Leclerc S; Guérin SL
    Methods Mol Biol; 2009; 543():15-35. PubMed ID: 19378156
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrophoretic Mobility Shift Assay of DNA and CRISPR-Cas Ribonucleoprotein Complexes.
    Künne T; Westra ER; Brouns SJ
    Methods Mol Biol; 2015; 1311():171-84. PubMed ID: 25981473
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of the cruciform binding activity of recombinant 14-3-3zeta-MBP fusion protein, its heterodimerization profile with endogenous 14-3-3 isoforms, and effect on mammalian DNA replication in vitro.
    Alvarez D; Callejo M; Shoucri R; Boyer L; Price GB; Zannis-Hadjopoulos M
    Biochemistry; 2003 Jun; 42(23):7205-15. PubMed ID: 12795617
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transcription factor binding study by capillary zone electrophoretic mobility shift assay.
    Ronai Z; Wang Y; Khandurina J; Budworth P; Sasvari-Szekely M; Wang X; Guttman A
    Electrophoresis; 2003 Jan; 24(1-2):96-100. PubMed ID: 12652578
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrophoretic mobility shift assay for characterizing RNA-protein interaction.
    Gagnon KT; Maxwell ES
    Methods Mol Biol; 2011; 703():275-91. PubMed ID: 21125497
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-affinity binding of tumor-suppressor protein p53 and HMGB1 to hemicatenated DNA loops.
    Stros M; Muselíková-Polanská E; Pospísilová S; Strauss F
    Biochemistry; 2004 Jun; 43(22):7215-25. PubMed ID: 15170359
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrophoretic Mobility Shift Assays with GFP-Tagged Proteins (GFP-EMSA).
    Sorenson AE; Schaeffer PM
    Methods Mol Biol; 2020; 2089():159-166. PubMed ID: 31773653
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of the acidic tail on the DNA-binding properties of the HMG1,2 class of proteins: insights from tail switching and tail removal.
    Lee KB; Thomas JO
    J Mol Biol; 2000 Nov; 304(2):135-49. PubMed ID: 11080451
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.