These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 19378962)

  • 1. Computational methods for predicting sites of functionally important dynamics.
    Schuyler AD; Carlson HA; Feldman EL
    J Phys Chem B; 2009 May; 113(19):6613-22. PubMed ID: 19378962
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Distal Regions Regulate Dihydrofolate Reductase-Ligand Interactions.
    Goldstein M; Goodey NM
    Methods Mol Biol; 2021; 2253():185-219. PubMed ID: 33315225
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automated identification of functional dynamic contact networks from X-ray crystallography.
    van den Bedem H; Bhabha G; Yang K; Wright PE; Fraser JS
    Nat Methods; 2013 Sep; 10(9):896-902. PubMed ID: 23913260
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Correlated motion and the effect of distal mutations in dihydrofolate reductase.
    Rod TH; Radkiewicz JL; Brooks CL
    Proc Natl Acad Sci U S A; 2003 Jun; 100(12):6980-5. PubMed ID: 12756296
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evidence for a functional role of the dynamics of glycine-121 of Escherichia coli dihydrofolate reductase obtained from kinetic analysis of a site-directed mutant.
    Cameron CE; Benkovic SJ
    Biochemistry; 1997 Dec; 36(50):15792-800. PubMed ID: 9398309
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact of distal mutations on the network of coupled motions correlated to hydride transfer in dihydrofolate reductase.
    Wong KF; Selzer T; Benkovic SJ; Hammes-Schiffer S
    Proc Natl Acad Sci U S A; 2005 May; 102(19):6807-12. PubMed ID: 15811945
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of mutation on enzyme motion in dihydrofolate reductase.
    Watney JB; Agarwal PK; Hammes-Schiffer S
    J Am Chem Soc; 2003 Apr; 125(13):3745-50. PubMed ID: 12656604
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Increased substrate affinity in the Escherichia coli L28R dihydrofolate reductase mutant causes trimethoprim resistance.
    Abdizadeh H; Tamer YT; Acar O; Toprak E; Atilgan AR; Atilgan C
    Phys Chem Chem Phys; 2017 May; 19(18):11416-11428. PubMed ID: 28422217
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure, dynamics, and catalytic function of dihydrofolate reductase.
    Schnell JR; Dyson HJ; Wright PE
    Annu Rev Biophys Biomol Struct; 2004; 33():119-40. PubMed ID: 15139807
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of hydride transfer and cofactor fluorescence decay in mutants of dihydrofolate reductase: possible evidence for participation of enzyme molecular motions in catalysis.
    Farnum MF; Magde D; Howell EE; Hirai JT; Warren MS; Grimsley JK; Kraut J
    Biochemistry; 1991 Dec; 30(49):11567-79. PubMed ID: 1747376
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Site-Specific Tryptophan Labels Reveal Local Microsecond-Millisecond Motions of Dihydrofolate Reductase.
    Vaughn MB; Biren C; Li Q; Ragupathi A; Dyer RB
    Molecules; 2020 Aug; 25(17):. PubMed ID: 32842574
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Allosteric regulatory control in dihydrofolate reductase is revealed by dynamic asymmetry.
    Kazan IC; Mills JH; Ozkan SB
    Protein Sci; 2023 Aug; 32(8):e4700. PubMed ID: 37313628
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of Asp122 Mutation on the Hydride Transfer in E. coli DHFR Demonstrates the Goldilocks of Enzyme Flexibility.
    Mhashal AR; Pshetitsky Y; Eitan R; Cheatum CM; Kohen A; Major DT
    J Phys Chem B; 2018 Aug; 122(33):8006-8017. PubMed ID: 30040418
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nuclear magnetic resonance study of the role of M42 in the solution dynamics of Escherichia coli dihydrofolate reductase.
    Mauldin RV; Lee AL
    Biochemistry; 2010 Mar; 49(8):1606-15. PubMed ID: 20073522
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure-based analysis of Bacilli and plasmid dihydrofolate reductase evolution.
    Alotaibi M; Reyes BD; Le T; Luong P; Valafar F; Metzger RP; Fogel GB; Hecht D
    J Mol Graph Model; 2017 Jan; 71():135-153. PubMed ID: 27914300
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The solution structure of Bacillus anthracis dihydrofolate reductase yields insight into the analysis of structure-activity relationships for novel inhibitors.
    Beierlein JM; Deshmukh L; Frey KM; Vinogradova O; Anderson AC
    Biochemistry; 2009 May; 48(19):4100-8. PubMed ID: 19323450
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Motions of Allosteric and Orthosteric Ligand-Binding Sites in Proteins are Highly Correlated.
    Ma X; Meng H; Lai L
    J Chem Inf Model; 2016 Sep; 56(9):1725-33. PubMed ID: 27580047
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In silico screening against wild-type and mutant Plasmodium falciparum dihydrofolate reductase.
    Fogel GB; Cheung M; Pittman E; Hecht D
    J Mol Graph Model; 2008 Apr; 26(7):1145-52. PubMed ID: 18037315
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Atomic scale determination of enzyme flexibility and active site stability through static modes: case of dihydrofolate reductase.
    Brut M; Estève A; Landa G; Renvez G; Djafari Rouhani M; Vaisset M
    J Phys Chem B; 2011 Feb; 115(7):1616-22. PubMed ID: 21287995
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Disruption of the crossover helix impairs dihydrofolate reductase activity in the bifunctional enzyme TS-DHFR from Cryptosporidium hominis.
    Vargo MA; Martucci WE; Anderson KS
    Biochem J; 2009 Feb; 417(3):757-64. PubMed ID: 18851711
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.