BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 19378997)

  • 1. Regulation of lysozyme activity based on thermotolerant protein/smart polymer complex formation.
    Ganguli S; Yoshimoto K; Tomita S; Sakuma H; Matsuoka T; Shiraki K; Nagasaki Y
    J Am Chem Soc; 2009 May; 131(18):6549-53. PubMed ID: 19378997
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improving the heat resistance of ribonuclease A by the addition of poly(N,N-diethylaminoethyl methacrylate)-graft-poly(ethylene glycol) (PEAMA-g-PEG).
    Ganguli S; Yoshimoto K; Tomita S; Sakuma H; Matsuoka T; Shiraki K; Nagasaki Y
    Macromol Biosci; 2010 Aug; 10(8):853-9. PubMed ID: 20301119
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improved complementary polymer pair system: switching for enzyme activity by PEGylated polymers.
    Kurinomaru T; Tomita S; Kudo S; Ganguli S; Nagasaki Y; Shiraki K
    Langmuir; 2012 Mar; 28(9):4334-8. PubMed ID: 22320263
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of a novel multifunctional excipient poly(ethylene glycol)-block-oligo(vinyl sulfadimethoxine) in controlled release of lysozyme from PLGA microspheres.
    Taluja A; Bae YH
    Int J Pharm; 2008 Jun; 358(1-2):50-9. PubMed ID: 18395374
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Noncovalent complexes between poly(ethylene glycol) and proteins.
    Topchieva IN; Sorokina EM; Efremova NV; Ksenofontov AL
    Biochemistry (Mosc); 1998 Nov; 63(11):1312-8. PubMed ID: 9864473
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An acid-labile block copolymer of PDMAEMA and PEG as potential carrier for intelligent gene delivery systems.
    Lin S; Du F; Wang Y; Ji S; Liang D; Yu L; Li Z
    Biomacromolecules; 2008 Jan; 9(1):109-15. PubMed ID: 18088093
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conformational recovery and preservation of protein nature from heat-induced denaturation by water-soluble phospholipid polymer conjugation.
    Seo JH; Matsuno R; Lee Y; Takai M; Ishihara K
    Biomaterials; 2009 Oct; 30(28):4859-67. PubMed ID: 19545892
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Slow-release system of pegylated lysozyme utilizing formation of polypseudorotaxanes with cyclodextrins.
    Higashi T; Hirayama F; Yamashita S; Misumi S; Arima H; Uekama K
    Int J Pharm; 2009 Jun; 374(1-2):26-32. PubMed ID: 19446755
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Different mechanisms of action of poly(ethylene glycol) and arginine on thermal inactivation of lysozyme and ribonuclease A.
    Tomita S; Nagasaki Y; Shiraki K
    Biotechnol Bioeng; 2012 Oct; 109(10):2543-52. PubMed ID: 22528212
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biodegradable and biocompatible thermosensitive polymer based injectable implant for controlled release of protein.
    Tang Y; Singh J
    Int J Pharm; 2009 Jan; 365(1-2):34-43. PubMed ID: 18786623
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interaction of lysozyme with negatively charged flexible chain polymers.
    Romanini D; Braia M; Angarten RG; Loh W; Picó G
    J Chromatogr B Analyt Technol Biomed Life Sci; 2007 Sep; 857(1):25-31. PubMed ID: 17644499
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cationic Polyrotaxanes as a Feasible Framework for the Intracellular Delivery and Sustainable Activity of Anionic Enzymes: A Comparison Study with Methacrylate-Based Polycations.
    Tamura A; Ikeda G; Nishida K; Yui N
    Macromol Biosci; 2015 Aug; 15(8):1134-45. PubMed ID: 25923376
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A noncovalent switch for lysozyme.
    Wenck K; Koch S; Renner C; Sun W; Schrader T
    J Am Chem Soc; 2007 Dec; 129(51):16015-9. PubMed ID: 18052064
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thiolytically cleavable dithiobenzyl urethane-linked polymer-protein conjugates as macromolecular prodrugs: reversible PEGylation of proteins.
    Zalipsky S; Mullah N; Engbers C; Hutchins MU; Kiwan R
    Bioconjug Chem; 2007; 18(6):1869-78. PubMed ID: 17935288
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vitro and in vivo characteristics of core-shell type nanogel particles: optimization of core cross-linking density and surface poly(ethylene glycol) density in PEGylated nanogels.
    Tamura M; Ichinohe S; Tamura A; Ikeda Y; Nagasaki Y
    Acta Biomater; 2011 Sep; 7(9):3354-61. PubMed ID: 21664304
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aggregation of lysozyme and of poly(ethylene glycol)-modified lysozyme after adsorption to silica.
    Daly SM; Przybycien TM; Tilton RD
    Colloids Surf B Biointerfaces; 2007 May; 57(1):81-8. PubMed ID: 17317116
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Study of protein conformational stability and integrity using calorimetry and FT-Raman spectroscopy correlated with enzymatic activity.
    Elkordy AA; Forbes RT; Barry BW
    Eur J Pharm Sci; 2008 Feb; 33(2):177-90. PubMed ID: 18207710
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protein refolding assisted by periodic mesoporous organosilicas.
    Wang X; Lu D; Austin R; Agarwal A; Mueller LJ; Liu Z; Wu J; Feng P
    Langmuir; 2007 May; 23(10):5735-9. PubMed ID: 17402759
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Free-radical-mediated protein inactivation and recovery during protein photoencapsulation.
    Lin CC; Sawicki SM; Metters AT
    Biomacromolecules; 2008 Jan; 9(1):75-83. PubMed ID: 18088094
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermodynamic studies of partitioning behavior of lysozyme and conalbumin in aqueous two-phase systems.
    de Sousa Rde C; Coimbra JS; da Silva LH; da Silva Mdo C; Rojas EE; Vicente AA
    J Chromatogr B Analyt Technol Biomed Life Sci; 2009 Aug; 877(24):2579-84. PubMed ID: 19617006
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.