These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

49 related articles for article (PubMed ID: 19379444)

  • 1. Blood compatibility and filtration characteristics of a newly developed polyester polymer alloy membrane.
    Yamashita AC; Tomisawa N; Takezawa A; Sakurai K; Sakai T
    Hemodial Int; 2004 Oct; 8(4):368-71. PubMed ID: 19379444
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanotechnological characterization of human serum albumin adsorption on wet synthetic polymer dialysis membrane surfaces.
    Namekawa K; Fukuda M; Matsuda M; Yagi Y; Yamamoto K; Sakai K
    ASAIO J; 2009; 55(3):236-42. PubMed ID: 19357497
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigation of endotoxin adsorption with polyether polymer alloy dialysis membranes.
    Nakatani T; Tsuchida K; Sugimura K; Yoshimura R; Takemoto Y
    Int J Mol Med; 2003 Feb; 11(2):195-7. PubMed ID: 12525877
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of fluid flow on elution of hydrophilic modifier from dialysis membrane surfaces.
    Matsuda M; Sato M; Sakata H; Ogawa T; Yamamoto K; Yakushiji T; Fukuda M; Miyasaka T; Sakai K
    J Artif Organs; 2008; 11(3):148-55. PubMed ID: 18836876
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Importance of membrane materials for blood purification devices in critical care.
    Yamashita AC; Tomisawa N
    Transfus Apher Sci; 2009 Feb; 40(1):23-31. PubMed ID: 19167928
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differences in the adsorption of nafamostat mesilate between polyester-polymer alloy and polysulfone membranes.
    Goto S; Ookawara S; Saito A
    J Artif Organs; 2017 Jun; 20(2):138-144. PubMed ID: 27896500
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Endotoxin adsorption of various dialysis membranes: in vitro study.
    Takemoto Y; Nakatani T; Sugimura K; Yoshimura R; Tsuchida K
    Artif Organs; 2003 Dec; 27(12):1134-7. PubMed ID: 14678429
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Clinical evaluation of a new dialyzer, FLX-12 GW, with a polyester-polymer alloy membrane.
    Stein G; Günther K; Sperschneider H; Carlsohn H; Hüller M; Schubert K; Schaller R
    Artif Organs; 1993 May; 17(5):339-45. PubMed ID: 8507169
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Amount of adsorbed albumin loss by dialysis membranes with protein adsorption.
    Tomisawa N; Yamashita AC
    J Artif Organs; 2009; 12(3):194-9. PubMed ID: 19894094
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular iodine preconcentration and determination in aqueous samples using poly(vinylpyrrolidone) containing membranes.
    Bhagat PR; Pandey AK; Acharya R; Nair AG; Rajurkar NS; Reddy AV
    Talanta; 2008 Feb; 74(5):1313-20. PubMed ID: 18371784
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vitro performance characteristics of a high-flux hemodialyzer with a novel polyester-polymer-alloy (PEPA) membrane.
    Smith MD; Mahiout A
    Perfusion; 2002 May; 17 Suppl():41-5. PubMed ID: 12009085
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Maximal flow rates and sieving coefficients in different plasmafilters: effects of increased membrane surfaces and effective length under standardized in vitro conditions.
    Unger JK; Haltern C; Dohmen B; Rossaint R
    J Clin Apher; 2002; 17(4):190-8. PubMed ID: 12494412
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phase behavior of poly(vinylpyrrolidone) containing amorphous solid dispersions in the presence of moisture.
    Rumondor AC; Marsac PJ; Stanford LA; Taylor LS
    Mol Pharm; 2009; 6(5):1492-505. PubMed ID: 19634917
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of PVP on the characteristic of modified membranes made from waste PET bottles for humic acid removal.
    Arahman N; Fahrina A; Amalia S; Sunarya R; Mulyati S
    F1000Res; 2017; 6():668. PubMed ID: 28690833
    [No Abstract]   [Full Text] [Related]  

  • 15. Acid Pretreatment to Enhance Proton Transport of a Polysulfone-Polyvinylpyrrolidone Membrane for Application in Vanadium Redox Flow Batteries.
    Wu C; Zhang J; Lu S; Xiang Y; Jiang SP
    Chempluschem; 2018 Oct; 83(10):909-914. PubMed ID: 31950611
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Potentiometric membrane sensors for polyvinylpyrrolidone determination.
    Chmilenko FA; Korobova IV; Gurtovaya OV; Chmilenko TS
    Talanta; 2009 Jun; 78(4-5):1259-65. PubMed ID: 19362185
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of packing density of hollow fibers on solute removal performances of dialyzers.
    Yamashita AC; Fujita R; Tomisawa N; Jinbo Y; Yamamura M
    Hemodial Int; 2009 Oct; 13 Suppl 1():S2-7. PubMed ID: 19775420
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Removal of toxic ions (chromate, arsenate, and perchlorate) using reverse osmosis, nanofiltration, and ultrafiltration membranes.
    Yoon J; Amy G; Chung J; Sohn J; Yoon Y
    Chemosphere; 2009 Sep; 77(2):228-35. PubMed ID: 19679331
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Validity of internal filtration-enhanced hemodialysis as a new hemodiafiltration therapy.
    Mineshima M; Ishimori I; Sakiyama R
    Blood Purif; 2009; 27(1):33-7. PubMed ID: 19169015
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Performance and fouling characteristics of different pore-sized submerged ceramic membrane bioreactors (SCMBR).
    Jin L; Ng HY; Ong SL
    Water Sci Technol; 2009; 59(11):2213-8. PubMed ID: 19494461
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.