These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 19380148)

  • 61. Structure of liquid films of an ordered foam confined in a narrow channel.
    Terriac E; Artzner F; Moréac A; Meriadec C; Chasle P; Ameline JC; Ohana J; Emile J
    Langmuir; 2007 Nov; 23(24):12055-60. PubMed ID: 17949020
    [TBL] [Abstract][Full Text] [Related]  

  • 62. A model for foam formation, stability, and breakdown in glass-melting furnaces.
    van der Schaaf J; Beerkens RG
    J Colloid Interface Sci; 2006 Mar; 295(1):218-29. PubMed ID: 16140316
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Drainage of single Plateau borders: direct observation of rigid and mobile interfaces.
    Koehler SA; Hilgenfeldt S; Weeks ER; Stone HA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Oct; 66(4 Pt 1):040601. PubMed ID: 12443164
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Dissipative flows of 2D foams.
    Cantat I; Delannay R
    Eur Phys J E Soft Matter; 2005 Sep; 18(1):55-67. PubMed ID: 16208436
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Analysis of creaming and formation of foam layer in aerated liquid.
    Narsimhan G
    J Colloid Interface Sci; 2010 May; 345(2):566-72. PubMed ID: 20236651
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Bubble formation in lattice Boltzmann immiscible shear flow.
    Qin RS
    J Chem Phys; 2007 Mar; 126(11):114506. PubMed ID: 17381219
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Sound propagation in liquid foams: Unraveling the balance between physical and chemical parameters.
    Pierre J; Giraudet B; Chasle P; Dollet B; Saint-Jalmes A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Apr; 91(4):042311. PubMed ID: 25974495
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Mass transfer between microbubbles.
    Yang Y; Biviano MD; Guo J; Berry JD; Dagastine RR
    J Colloid Interface Sci; 2020 Jul; 571():253-259. PubMed ID: 32203761
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Finding robust descriptive features for the characterization of the coarsening dynamics of three dimensional whey protein foams.
    Dittmann J; Eggert A; Lambertus M; Dombrowski J; Rack A; Zabler S
    J Colloid Interface Sci; 2016 Apr; 467():148-157. PubMed ID: 26802273
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Intermittent dynamics of bubble dissolution due to interfacial growth of fat crystals.
    Liascukiene I; Amselem G; Landoulsi J; Gunes DZ; Baroud CN
    Soft Matter; 2021 Nov; 17(44):10042-10052. PubMed ID: 34709287
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Coarsening foams robustly reach a self-similar growth regime.
    Lambert J; Mokso R; Cantat I; Cloetens P; Glazier JA; Graner F; Delannay R
    Phys Rev Lett; 2010 Jun; 104(24):248304. PubMed ID: 20867343
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Foam invasion through a single pore.
    Delbos A; Pitois O
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jul; 84(1 Pt 1):011404. PubMed ID: 21867168
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Materials: solidification and ostwald ripening of near-monotectic zinc-lead alloys.
    Kneissl A; Fischmeister H
    Science; 1984 Jul; 225(4658):198-200. PubMed ID: 17837941
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Effect of powder oxide content on the expansion and stability of PM-route Al foams.
    Asavavisithchai S; Kennedy AR
    J Colloid Interface Sci; 2006 May; 297(2):715-23. PubMed ID: 16360668
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Unusually stable liquid foams.
    Rio E; Drenckhan W; Salonen A; Langevin D
    Adv Colloid Interface Sci; 2014 Mar; 205():74-86. PubMed ID: 24342735
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Capillary force required to detach micron-sized particles from solid surfaces--validation with bubbles circulating in water and 2 microm-diameter latex spheres.
    Kondjoyan A; Dessaigne S; Herry JM; Bellon-Fontaine MN
    Colloids Surf B Biointerfaces; 2009 Oct; 73(2):276-83. PubMed ID: 19559577
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Size-differentiated lateral migration of bubbles in Couette flow of two-dimensional foam.
    Mohammadigoushki H; Feng JJ
    Phys Rev Lett; 2012 Aug; 109(8):084502. PubMed ID: 23002748
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Experimentally testing a generalized coarsening model for individual bubbles in quasi-two-dimensional wet foams.
    Chieco AT; Durian DJ
    Phys Rev E; 2021 Jan; 103(1-1):012610. PubMed ID: 33601566
    [TBL] [Abstract][Full Text] [Related]  

  • 79. An Experimental and Numerical Investigation on Bubble Growth in Polymeric Foams.
    Tammaro D; Villone MM; D'Avino G; Maffettone PL
    Entropy (Basel); 2022 Jan; 24(2):. PubMed ID: 35205479
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Radio-frequency probe for bubble size and velocity measurements.
    Abuaf N; Feierabend TP; Zimmer GA; Jones OC
    Rev Sci Instrum; 1979 Oct; 50(10):1260. PubMed ID: 18699371
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.