BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

299 related articles for article (PubMed ID: 19380481)

  • 1. Novel types of Ca2+ release channels participate in the secretory cycle of Paramecium cells.
    Ladenburger EM; Sehring IM; Korn I; Plattner H
    Mol Cell Biol; 2009 Jul; 29(13):3605-22. PubMed ID: 19380481
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Calcium signalling in the ciliated protozoan model, Paramecium: strict signal localisation by epigenetically controlled positioning of different Ca²⁺-channels.
    Plattner H
    Cell Calcium; 2015 Mar; 57(3):203-13. PubMed ID: 25277862
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Calcium-release channels in paramecium. Genomic expansion, differential positioning and partial transcriptional elimination.
    Ladenburger EM; Plattner H
    PLoS One; 2011; 6(11):e27111. PubMed ID: 22102876
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular aspects of calcium signalling at the crossroads of unikont and bikont eukaryote evolution--the ciliated protozoan Paramecium in focus.
    Plattner H
    Cell Calcium; 2015 Mar; 57(3):174-85. PubMed ID: 25601027
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An Ins(1,4,5)P3 receptor in Paramecium is associated with the osmoregulatory system.
    Ladenburger EM; Korn I; Kasielke N; Wassmer T; Plattner H
    J Cell Sci; 2006 Sep; 119(Pt 17):3705-17. PubMed ID: 16912081
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Calcium regulation in the protozoan model, Paramecium tetraurelia.
    Plattner H
    J Eukaryot Microbiol; 2014; 61(1):95-114. PubMed ID: 24001309
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Membrane traffic and Ca
    Plattner H
    J Eukaryot Microbiol; 2022 Sep; 69(5):e12895. PubMed ID: 35156735
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A multigene family encoding R-SNAREs in the ciliate Paramecium tetraurelia.
    Schilde C; Wassmer T; Mansfeld J; Plattner H; Kissmehl R
    Traffic; 2006 Apr; 7(4):440-55. PubMed ID: 16536742
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of Ca2+-release-activated Ca2+ current (Icrac) by ryanodine receptors in inositol 1,4,5-trisphosphate-receptor-deficient DT40 cells.
    Kiselyov K; Shin DM; Shcheynikov N; Kurosaki T; Muallem S
    Biochem J; 2001 Nov; 360(Pt 1):17-22. PubMed ID: 11695987
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Calcium signaling in closely related protozoan groups (Alveolata): non-parasitic ciliates (Paramecium, Tetrahymena) vs. parasitic Apicomplexa (Plasmodium, Toxoplasma).
    Plattner H; Sehring IM; Mohamed IK; Miranda K; De Souza W; Billington R; Genazzani A; Ladenburger EM
    Cell Calcium; 2012 May; 51(5):351-82. PubMed ID: 22387010
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sparks and puffs in oligodendrocyte progenitors: cross talk between ryanodine receptors and inositol trisphosphate receptors.
    Haak LL; Song LS; Molinski TF; Pessah IN; Cheng H; Russell JT
    J Neurosci; 2001 Jun; 21(11):3860-70. PubMed ID: 11356874
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mobilization of calcium from intracellular stores facilitates somatodendritic dopamine release.
    Patel JC; Witkovsky P; Avshalumov MV; Rice ME
    J Neurosci; 2009 May; 29(20):6568-79. PubMed ID: 19458227
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ca2+ signalling early in evolution--all but primitive.
    Plattner H; Verkhratsky A
    J Cell Sci; 2013 May; 126(Pt 10):2141-50. PubMed ID: 23729741
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Themes and variations in ER/SR calcium release channels: structure and function.
    Stathopulos PB; Seo MD; Enomoto M; Amador FJ; Ishiyama N; Ikura M
    Physiology (Bethesda); 2012 Dec; 27(6):331-42. PubMed ID: 23223627
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bile acids induce Ca2+ release from both the endoplasmic reticulum and acidic intracellular calcium stores through activation of inositol trisphosphate receptors and ryanodine receptors.
    Gerasimenko JV; Flowerdew SE; Voronina SG; Sukhomlin TK; Tepikin AV; Petersen OH; Gerasimenko OV
    J Biol Chem; 2006 Dec; 281(52):40154-63. PubMed ID: 17074764
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nd6p, a novel protein with RCC1-like domains involved in exocytosis in Paramecium tetraurelia.
    Gogendeau D; Keller AM; Yanagi A; Cohen J; Koll F
    Eukaryot Cell; 2005 Dec; 4(12):2129-39. PubMed ID: 16339730
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional and fluorochrome analysis of an exocytotic mutant yields evidence of store-operated Ca2+ influx in Paramecium.
    Mohamed I; Klauke N; Hentschel J; Cohen J; Plattner H
    J Membr Biol; 2002 May; 187(1):1-14. PubMed ID: 12029373
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The dynamics of stochastic attrition viewed as an absorption time on a terminating Markov chain.
    DeRemigio H; Smith GD
    Cell Calcium; 2005 Aug; 38(2):73-86. PubMed ID: 16099503
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Trichocysts-Paramecium's Projectile-like Secretory Organelles: Reappraisal of their Biogenesis, Composition, Intracellular Transport, and Possible Functions.
    Plattner H
    J Eukaryot Microbiol; 2017 Jan; 64(1):106-133. PubMed ID: 27251227
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydroxylated xestospongins block inositol-1,4,5-trisphosphate-induced Ca2+ release and sensitize Ca2+-induced Ca2+ release mediated by ryanodine receptors.
    Ta TA; Feng W; Molinski TF; Pessah IN
    Mol Pharmacol; 2006 Feb; 69(2):532-8. PubMed ID: 16249374
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.