BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

523 related articles for article (PubMed ID: 19380727)

  • 1. Minimal molecular constraints for respiratory droplet transmission of an avian-human H9N2 influenza A virus.
    Sorrell EM; Wan H; Araya Y; Song H; Perez DR
    Proc Natl Acad Sci U S A; 2009 May; 106(18):7565-70. PubMed ID: 19380727
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Replication and transmission of mammalian-adapted H9 subtype influenza virus in pigs and quail.
    Obadan AO; Kimble BJ; Rajao D; Lager K; Santos JJS; Vincent A; Perez DR
    J Gen Virol; 2015 Sep; 96(9):2511-2521. PubMed ID: 25986634
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental adaptation of an influenza H5 HA confers respiratory droplet transmission to a reassortant H5 HA/H1N1 virus in ferrets.
    Imai M; Watanabe T; Hatta M; Das SC; Ozawa M; Shinya K; Zhong G; Hanson A; Katsura H; Watanabe S; Li C; Kawakami E; Yamada S; Kiso M; Suzuki Y; Maher EA; Neumann G; Kawaoka Y
    Nature; 2012 May; 486(7403):420-8. PubMed ID: 22722205
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Compatibility of H9N2 avian influenza surface genes and 2009 pandemic H1N1 internal genes for transmission in the ferret model.
    Kimble JB; Sorrell E; Shao H; Martin PL; Perez DR
    Proc Natl Acad Sci U S A; 2011 Jul; 108(29):12084-8. PubMed ID: 21730147
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The PB1 gene from H9N2 avian influenza virus showed high compatibility and increased mutation rate after reassorting with a human H1N1 influenza virus.
    Cui H; Che G; de Jong MCM; Li X; Liu Q; Yang J; Teng Q; Li Z; Beerens N
    Virol J; 2022 Jan; 19(1):20. PubMed ID: 35078489
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coinfection of Chickens with H9N2 and H7N9 Avian Influenza Viruses Leads to Emergence of Reassortant H9N9 Virus with Increased Fitness for Poultry and a Zoonotic Potential.
    Bhat S; James J; Sadeyen JR; Mahmood S; Everest HJ; Chang P; Walsh SK; Byrne AMP; Mollett B; Lean F; Sealy JE; Shelton H; Slomka MJ; Brookes SM; Iqbal M
    J Virol; 2022 Mar; 96(5):e0185621. PubMed ID: 35019727
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Antigenic and genetic characterization of H9N2 swine influenza viruses in China.
    Cong YL; Pu J; Liu QF; Wang S; Zhang GZ; Zhang XL; Fan WX; Brown EG; Liu JH
    J Gen Virol; 2007 Jul; 88(Pt 7):2035-2041. PubMed ID: 17554038
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Newly Emergent Highly Pathogenic H5N9 Subtype Avian Influenza A Virus.
    Yu Y; Wang X; Jin T; Wang H; Si W; Yang H; Wu J; Yan Y; Liu G; Sang X; Wu X; Gao Y; Xia X; Yu X; Pan J; Gao GF; Zhou J
    J Virol; 2015 Sep; 89(17):8806-15. PubMed ID: 26085150
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Single Mutation at Position 190 in Hemagglutinin Enhances Binding Affinity for Human Type Sialic Acid Receptor and Replication of H9N2 Avian Influenza Virus in Mice.
    Teng Q; Xu D; Shen W; Liu Q; Rong G; Li X; Yan L; Yang J; Chen H; Yu H; Ma W; Li Z
    J Virol; 2016 Nov; 90(21):9806-9825. PubMed ID: 27558420
    [TBL] [Abstract][Full Text] [Related]  

  • 10. H9N2 Influenza Virus Infections in Human Cells Require a Balance between Neuraminidase Sialidase Activity and Hemagglutinin Receptor Affinity.
    Arai Y; Elgendy EM; Daidoji T; Ibrahim MS; Ono T; Sriwilaijaroen N; Suzuki Y; Nakaya T; Matsumoto K; Watanabe Y
    J Virol; 2020 Aug; 94(18):. PubMed ID: 32641475
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative characterization of glycan-receptor binding of H9N2 influenza A virus hemagglutinin.
    Srinivasan K; Raman R; Jayaraman A; Viswanathan K; Sasisekharan R
    PLoS One; 2013; 8(4):e59550. PubMed ID: 23626667
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differences in transmissibility and pathogenicity of reassortants between H9N2 and 2009 pandemic H1N1 influenza A viruses from humans and swine.
    He L; Wu Q; Jiang K; Duan Z; Liu J; Xu H; Cui Z; Gu M; Wang X; Liu X; Liu X
    Arch Virol; 2014 Jul; 159(7):1743-54. PubMed ID: 24510170
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Airborne Transmission of Avian Origin H9N2 Influenza A Viruses in Mammals.
    Cáceres CJ; Rajao DS; Perez DR
    Viruses; 2021 Sep; 13(10):. PubMed ID: 34696349
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Replication and transmission of H9N2 influenza viruses in ferrets: evaluation of pandemic potential.
    Wan H; Sorrell EM; Song H; Hossain MJ; Ramirez-Nieto G; Monne I; Stevens J; Cattoli G; Capua I; Chen LM; Donis RO; Busch J; Paulson JC; Brockwell C; Webby R; Blanco J; Al-Natour MQ; Perez DR
    PLoS One; 2008 Aug; 3(8):e2923. PubMed ID: 18698430
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reassortment and modification of hemagglutinin cleavage motif of avian/WSN influenza viruses generated by reverse genetics that correlate with attenuation.
    Lu JH; Long JX; Jia LJ; Liu YL; Shao WX; Zhang YM; Liu XF
    Acta Virol; 2006; 50(4):243-9. PubMed ID: 17177609
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Contemporary avian influenza A virus subtype H1, H6, H7, H10, and H15 hemagglutinin genes encode a mammalian virulence factor similar to the 1918 pandemic virus H1 hemagglutinin.
    Qi L; Pujanauski LM; Davis AS; Schwartzman LM; Chertow DS; Baxter D; Scherler K; Hartshorn KL; Slemons RD; Walters KA; Kash JC; Taubenberger JK
    mBio; 2014 Nov; 5(6):e02116. PubMed ID: 25406382
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The replication of Bangladeshi H9N2 avian influenza viruses carrying genes from H7N3 in mammals.
    Shanmuganatham KK; Jones JC; Marathe BM; Feeroz MM; Jones-Engel L; Walker D; Turner J; Rabiul Alam SM; Kamrul Hasan M; Akhtar S; Seiler P; McKenzie P; Krauss S; Webby RJ; Webster RG
    Emerg Microbes Infect; 2016 Apr; 5(4):e35. PubMed ID: 27094903
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel activation mechanism of avian influenza virus H9N2 by furin.
    Tse LV; Hamilton AM; Friling T; Whittaker GR
    J Virol; 2014 Feb; 88(3):1673-83. PubMed ID: 24257604
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Human HA and polymerase subunit PB2 proteins confer transmission of an avian influenza virus through the air.
    Van Hoeven N; Pappas C; Belser JA; Maines TR; Zeng H; García-Sastre A; Sasisekharan R; Katz JM; Tumpey TM
    Proc Natl Acad Sci U S A; 2009 Mar; 106(9):3366-71. PubMed ID: 19211790
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Natural Reassortants of Potentially Zoonotic Avian Influenza Viruses H5N1 and H9N2 from Egypt Display Distinct Pathogenic Phenotypes in Experimentally Infected Chickens and Ferrets.
    Naguib MM; Ulrich R; Kasbohm E; Eng CLP; Hoffmann D; Grund C; Beer M; Harder TC
    J Virol; 2017 Dec; 91(23):. PubMed ID: 28931674
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.