These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
8. Prefrontal Engagement and Reduced Default Network Suppression Co-occur and Are Dynamically Coupled in Older Adults: The Default-Executive Coupling Hypothesis of Aging. Turner GR; Spreng RN J Cogn Neurosci; 2015 Dec; 27(12):2462-76. PubMed ID: 26351864 [TBL] [Abstract][Full Text] [Related]
9. Task-related activity in prefrontal cortex and its relation to recognition memory performance in young and old adults. Grady CL; McIntosh AR; Craik FI Neuropsychologia; 2005; 43(10):1466-81. PubMed ID: 15989937 [TBL] [Abstract][Full Text] [Related]
10. Tempering Proactive Cognitive Control by Transcranial Direct Current Stimulation of the Right (but Not the Left) Lateral Prefrontal Cortex. Gómez-Ariza CJ; Martín MC; Morales J Front Neurosci; 2017; 11():282. PubMed ID: 28588441 [TBL] [Abstract][Full Text] [Related]
11. Improving prefrontal cortex function in schizophrenia through focused training of cognitive control. Edwards BG; Barch DM; Braver TS Front Hum Neurosci; 2010; 4():32. PubMed ID: 20461148 [TBL] [Abstract][Full Text] [Related]
12. Prefrontal cortical-specific differences in behavior and synaptic plasticity between adolescent and adult mice. Konstantoudaki X; Chalkiadaki K; Vasileiou E; Kalemaki K; Karagogeos D; Sidiropoulou K J Neurophysiol; 2018 Mar; 119(3):822-833. PubMed ID: 29167323 [TBL] [Abstract][Full Text] [Related]
13. The neural circuitry supporting goal maintenance during cognitive control: a comparison of expectancy AX-CPT and dot probe expectancy paradigms. Lopez-Garcia P; Lesh TA; Salo T; Barch DM; MacDonald AW; Gold JM; Ragland JD; Strauss M; Silverstein SM; Carter CS Cogn Affect Behav Neurosci; 2016 Feb; 16(1):164-75. PubMed ID: 26494483 [TBL] [Abstract][Full Text] [Related]
14. Differential Roles of Mediodorsal Nucleus of the Thalamus and Prefrontal Cortex in Decision-Making and State Representation in a Cognitive Control Task Measuring Deficits in Schizophrenia. DeNicola AL; Park MY; Crowe DA; MacDonald AW; Chafee MV J Neurosci; 2020 Feb; 40(8):1650-1667. PubMed ID: 31941665 [TBL] [Abstract][Full Text] [Related]
15. Motivation and cognitive control in the human prefrontal cortex. Kouneiher F; Charron S; Koechlin E Nat Neurosci; 2009 Jul; 12(7):939-45. PubMed ID: 19503087 [TBL] [Abstract][Full Text] [Related]
16. Evidence for reduced efficiency and successful compensation in older adults during task switching. Hakun JG; Zhu Z; Johnson NF; Gold BT Cortex; 2015 Mar; 64():352-62. PubMed ID: 25614233 [TBL] [Abstract][Full Text] [Related]
17. The variable nature of cognitive control: a dual mechanisms framework. Braver TS Trends Cogn Sci; 2012 Feb; 16(2):106-13. PubMed ID: 22245618 [TBL] [Abstract][Full Text] [Related]
18. Between-task competition and cognitive control in task switching. Yeung N; Nystrom LE; Aronson JA; Cohen JD J Neurosci; 2006 Feb; 26(5):1429-38. PubMed ID: 16452666 [TBL] [Abstract][Full Text] [Related]
19. Sustained and transient neural modulations in prefrontal cortex related to declarative long-term memory, working memory, and attention. Marklund P; Fransson P; Cabeza R; Petersson KM; Ingvar M; Nyberg L Cortex; 2007 Jan; 43(1):22-37. PubMed ID: 17334205 [TBL] [Abstract][Full Text] [Related]
20. A computational approach to prefrontal cortex, cognitive control and schizophrenia: recent developments and current challenges. Cohen JD; Braver TS; O'Reilly RC Philos Trans R Soc Lond B Biol Sci; 1996 Oct; 351(1346):1515-27. PubMed ID: 8941963 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]