These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 19381129)

  • 21. A novel high electrode count spike recording array using an 81,920 pixel transimpedance amplifier-based imaging chip.
    Johnson LJ; Cohen E; Ilg D; Klein R; Skeath P; Scribner DA
    J Neurosci Methods; 2012 Apr; 205(2):223-32. PubMed ID: 22266817
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Techniques for long-term multisite neuronal ensemble recordings in behaving animals.
    Kralik JD; Dimitrov DF; Krupa DJ; Katz DB; Cohen D; Nicolelis MA
    Methods; 2001 Oct; 25(2):121-50. PubMed ID: 11812202
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Chronic multiunit recordings in behaving animals: advantages and limitations.
    Supèr H; Roelfsema PR
    Prog Brain Res; 2005; 147():263-82. PubMed ID: 15581712
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Multielectrode array recordings of the vomeronasal epithelium.
    Arnson HA; Fu X; Holy TE
    J Vis Exp; 2010 Mar; (37):. PubMed ID: 20195238
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Intracellular neuronal recording in awake nonhuman primates.
    Gao L; Wang X
    Nat Protoc; 2020 Nov; 15(11):3615-3631. PubMed ID: 33046899
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effective extra-cellular recording from vertebrate neurons in culture using a new type of micro-electrode array.
    Sandison M; Curtis AS; Wilkinson CD
    J Neurosci Methods; 2002 Feb; 114(1):63-71. PubMed ID: 11850040
    [TBL] [Abstract][Full Text] [Related]  

  • 27. On-chip optical stimulation and electrical recording from cells.
    Yakushenko A; Gong Z; Maybeck V; Hofmann B; Gu E; Dawson M; Offenhäusser A; Wolfrum B
    J Biomed Opt; 2013 Nov; 18(11):111402. PubMed ID: 23788259
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Action potential recording from dielectrophoretically positioned neurons inside micro-wells of a planar microelectrode array.
    Jaber FT; Labeed FH; Hughes MP
    J Neurosci Methods; 2009 Sep; 182(2):225-35. PubMed ID: 19540265
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The DMCdrive: practical 3D-printable micro-drive system for reliable chronic multi-tetrode recording and optogenetic application in freely behaving rodents.
    Kim H; Brünner HS; Carlén M
    Sci Rep; 2020 Jul; 10(1):11838. PubMed ID: 32678238
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Chronic recording of extracellular neuronal activity in behaving animals.
    Szymusiak R; Nitz D
    Curr Protoc Neurosci; 2003 Feb; Chapter 6():Unit 6.16. PubMed ID: 18428581
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Hybrid Microdrive System with Recoverable Opto-Silicon Probe and Tetrode for Dual-Site High Density Recording in Freely Moving Mice.
    Osanai H; Kitamura T; Yamamoto J
    J Vis Exp; 2019 Aug; (150):. PubMed ID: 31449259
    [TBL] [Abstract][Full Text] [Related]  

  • 32. HOPE: Hybrid-Drive Combining Optogenetics, Pharmacology and Electrophysiology.
    Delcasso S; Denagamage S; Britton Z; Graybiel AM
    Front Neural Circuits; 2018; 12():41. PubMed ID: 29872379
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A microelectrode array incorporating an optical waveguide device for stimulation and spatiotemporal electrical recording of neural activity.
    Zhang J; Laiwalla F; Kim JA; Urabe H; Van Wagenen R; Song YK; Connors BW; Nurmikko AV
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():2046-9. PubMed ID: 19964571
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A modular 256-channel micro electrode array platform for in vitro and in vivo neural stimulation and recording: BioMEA.
    Charvet G; Billoint O; Gharbi S; Heuschkel M; Georges C; Kauffmann T; Pellissier A; Yvert B; Guillemaud R
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():1804-7. PubMed ID: 21095937
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Tetrode recordings in the cerebellar cortex.
    Gao H; Solages Cd; Lena C
    J Physiol Paris; 2012; 106(3-4):128-36. PubMed ID: 22057014
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Active stabilization of electrodes for intracellular recording in awake behaving animals.
    Fee MS
    Neuron; 2000 Sep; 27(3):461-8. PubMed ID: 11055429
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Automatic sorting for multi-neuronal activity recorded with tetrodes in the presence of overlapping spikes.
    Takahashi S; Anzai Y; Sakurai Y
    J Neurophysiol; 2003 Apr; 89(4):2245-58. PubMed ID: 12612049
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A new multi-electrode array design for chronic neural recording, with independent and automatic hydraulic positioning.
    Sato T; Suzuki T; Mabuchi K
    J Neurosci Methods; 2007 Feb; 160(1):45-51. PubMed ID: 16996616
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A nanoelectrode array for obtaining intracellular recordings from thousands of connected neurons.
    Abbott J; Ye T; Krenek K; Gertner RS; Ban S; Kim Y; Qin L; Wu W; Park H; Ham D
    Nat Biomed Eng; 2020 Feb; 4(2):232-241. PubMed ID: 31548592
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Feedback controlled piezo-motor microdrive for accurate electrode positioning in chronic single unit recording in behaving mice.
    Yang S; Cho J; Lee S; Park K; Kim J; Huh Y; Yoon ES; Shin HS
    J Neurosci Methods; 2011 Feb; 195(2):117-27. PubMed ID: 20868709
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.