These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

263 related articles for article (PubMed ID: 19381271)

  • 1. End-tagging of ultra-short antimicrobial peptides by W/F stretches to facilitate bacterial killing.
    Pasupuleti M; Schmidtchen A; Chalupka A; Ringstad L; Malmsten M
    PLoS One; 2009; 4(4):e5285. PubMed ID: 19381271
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Boosting antimicrobial peptides by hydrophobic oligopeptide end tags.
    Schmidtchen A; Pasupuleti M; Mörgelin M; Davoudi M; Alenfall J; Chalupka A; Malmsten M
    J Biol Chem; 2009 Jun; 284(26):17584-94. PubMed ID: 19398550
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Highly selective end-tagged antimicrobial peptides derived from PRELP.
    Malmsten M; Kasetty G; Pasupuleti M; Alenfall J; Schmidtchen A
    PLoS One; 2011 Jan; 6(1):e16400. PubMed ID: 21298015
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tryptophan end-tagging of antimicrobial peptides for increased potency against Pseudomonas aeruginosa.
    Pasupuleti M; Chalupka A; Mörgelin M; Schmidtchen A; Malmsten M
    Biochim Biophys Acta; 2009 Aug; 1790(8):800-8. PubMed ID: 19345721
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Boosting stability and therapeutic potential of proteolysis-resistant antimicrobial peptides by end-tagging β-naphthylalanine.
    He S; Yang Z; Li X; Wu H; Zhang L; Shan A; Wang J
    Acta Biomater; 2023 Jul; 164():175-194. PubMed ID: 37100185
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Antimicrobial potency and selectivity of simplified symmetric-end peptides.
    Dong N; Zhu X; Chou S; Shan A; Li W; Jiang J
    Biomaterials; 2014 Sep; 35(27):8028-39. PubMed ID: 24952979
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Salt-resistant short antimicrobial peptides.
    Mohanram H; Bhattacharjya S
    Biopolymers; 2016 May; 106(3):345-56. PubMed ID: 26849911
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Membrane selectivity by W-tagging of antimicrobial peptides.
    Schmidtchen A; Ringstad L; Kasetty G; Mizuno H; Rutland MW; Malmsten M
    Biochim Biophys Acta; 2011 Apr; 1808(4):1081-91. PubMed ID: 21192916
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of strategies for improving proteolytic resistance of antimicrobial peptides by using variants of EFK17, an internal segment of LL-37.
    Strömstedt AA; Pasupuleti M; Schmidtchen A; Malmsten M
    Antimicrob Agents Chemother; 2009 Feb; 53(2):593-602. PubMed ID: 19029324
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tryptophan end-tagging for promoted lipopolysaccharide interactions and anti-inflammatory effects.
    Singh S; Datta A; Schmidtchen A; Bhunia A; Malmsten M
    Sci Rep; 2017 Mar; 7(1):212. PubMed ID: 28303012
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancement of the antimicrobial activity and selectivity of GNU7 against Gram-negative bacteria by fusion with LPS-targeting peptide.
    Kim H; Jang JH; Kim SC; Cho JH
    Peptides; 2016 Aug; 82():60-66. PubMed ID: 27242337
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Amphipathic alpha helical antimicrobial peptides.
    Giangaspero A; Sandri L; Tossi A
    Eur J Biochem; 2001 Nov; 268(21):5589-600. PubMed ID: 11683882
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhancing the Antimicrobial Properties of Peptides through Cell-Penetrating Peptide Conjugation: A Comprehensive Assessment.
    Kravchenko SV; Domnin PA; Grishin SY; Vershinin NA; Gurina EV; Zakharova AA; Azev VN; Mustaeva LG; Gorbunova EY; Kobyakova MI; Surin AK; Fadeev RS; Ostroumova OS; Ermolaeva SA; Galzitskaya OV
    Int J Mol Sci; 2023 Nov; 24(23):. PubMed ID: 38069046
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Therapeutic Potential of Trp-Rich Engineered Amphiphiles by Single Hydrophobic Amino Acid End-Tagging.
    Song J; Wang J; Zhan N; Sun T; Yu W; Zhang L; Shan A; Zhang A
    ACS Appl Mater Interfaces; 2019 Nov; 11(47):43820-43834. PubMed ID: 31687796
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Short, multiple-stranded β-hairpin peptides have antimicrobial potency with high selectivity and salt resistance.
    Chou S; Shao C; Wang J; Shan A; Xu L; Dong N; Li Z
    Acta Biomater; 2016 Jan; 30():78-93. PubMed ID: 26546414
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An unusual structural motif of antimicrobial peptides containing end-to-end macrocycle and cystine-knot disulfides.
    Tam JP; Lu YA; Yang JL; Chiu KW
    Proc Natl Acad Sci U S A; 1999 Aug; 96(16):8913-8. PubMed ID: 10430870
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The design of cell-selective tryptophan and arginine-rich antimicrobial peptides by introducing hydrophilic uncharged residues.
    Zhu Y; Akhtar MU; Li B; Chou S; Shao C; Li J; Shan A
    Acta Biomater; 2022 Nov; 153():557-572. PubMed ID: 36115654
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Manipulating turn residues on de novo designed β-hairpin peptides for selectivity against drug-resistant bacteria.
    Tram NDT; Selvarajan V; Boags A; Mukherjee D; Marzinek JK; Cheng B; Jiang ZC; Goh P; Koh JJ; Teo JWP; Bond PJ; Ee PLR
    Acta Biomater; 2021 Nov; 135():214-224. PubMed ID: 34506975
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of the hinge region of cecropin A(1-8)-magainin 2(1-12), a synthetic antimicrobial peptide, on liposomes, bacterial and tumor cells.
    Shin SY; Kang JH; Jang SY; Kim Y; Kim KL; Hahm KS
    Biochim Biophys Acta; 2000 Feb; 1463(2):209-18. PubMed ID: 10675500
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Insights into the membrane interaction mechanism and antibacterial properties of chensinin-1b.
    Sun Y; Dong W; Sun L; Ma L; Shang D
    Biomaterials; 2015 Jan; 37():299-311. PubMed ID: 25453959
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.