These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 19381416)

  • 1. Self-assembly of copper succinate nanoparticles to form anisotropic mesostructures.
    Ganguly A; Ahmad T; Ganguli AK
    Dalton Trans; 2009 May; (18):3536-41. PubMed ID: 19381416
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Controlling the size, morphology, and aspect ratio of nanostructures using reverse micelles: a case study of copper oxalate monohydrate.
    Ranjan R; Vaidya S; Thaplyal P; Qamar M; Ahmed J; Ganguli AK
    Langmuir; 2009 Jun; 25(11):6469-75. PubMed ID: 19466793
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of a microemulsion-based process for synthesis of cobalt (Co) and cobalt oxide (Co3O4) nanoparticles from submicrometer rods of cobalt oxalate.
    Ahmed J; Ahmad T; Ramanujachary KV; Lofland SE; Ganguli AK
    J Colloid Interface Sci; 2008 May; 321(2):434-41. PubMed ID: 18329658
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cooperative self-assembly-assisted formation of monodisperse optically active spherical and anisotropic nanoparticles.
    Sun Z; Bai F; Wu H; Schmitt SK; Boye DM; Jiang Z; Wang J; Fan H
    Chemistry; 2009 Oct; 15(42):11128-33. PubMed ID: 19774571
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simulation studies of self-assembly of end-tethered nanorods in solution and role of rod aspect ratio and tether length.
    Horsch MA; Zhang Z; Glotzer SC
    J Chem Phys; 2006 Nov; 125(18):184903. PubMed ID: 17115791
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Colloidal system to explore structural and dynamical transitions in rod networks, gels, and glasses.
    Wilkins GM; Spicer PT; Solomon MJ
    Langmuir; 2009 Aug; 25(16):8951-9. PubMed ID: 19572513
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Self-assembly of nanoparticles into structured spherical and network aggregates.
    Boal AK; Ilhan F; DeRouchey JE; Thurn-Albrecht T; Russell TP; Rotello VM
    Nature; 2000 Apr; 404(6779):746-8. PubMed ID: 10783884
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On one-dimensional self-assembly of surfactant-coated nanoparticles.
    Wang JC; Neogi P; Forciniti D
    J Chem Phys; 2006 Nov; 125(19):194717. PubMed ID: 17129160
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Controllable synthesis of conducting polypyrrole nanostructures.
    Zhang X; Zhang J; Song W; Liu Z
    J Phys Chem B; 2006 Jan; 110(3):1158-65. PubMed ID: 16471658
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A coarse-grained simulation study of mesophase formation in a series of rod-coil multiblock copolymers.
    Lintuvuori JS; Wilson MR
    Phys Chem Chem Phys; 2009 Mar; 11(12):2116-25. PubMed ID: 19280023
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spherical-to-cylindrical transformation of reverse micelles and their templating effect on the growth of nanostructures.
    Sharma S; Ganguli AK
    J Phys Chem B; 2014 Apr; 118(15):4122-31. PubMed ID: 24673483
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reverse micellar based synthesis of ultrafine MgO nanoparticles (8-10 nm): characterization and catalytic properties.
    Ganguly A; Trinh P; Ramanujachary KV; Ahmad T; Mugweru A; Ganguli AK
    J Colloid Interface Sci; 2011 Jan; 353(1):137-42. PubMed ID: 20934186
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Seed-mediated synthesis of palladium nanorods and branched nanocrystals and their use as recyclable Suzuki coupling reaction catalysts.
    Chen YH; Hung HH; Huang MH
    J Am Chem Soc; 2009 Jul; 131(25):9114-21. PubMed ID: 19507854
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-assembly of amphiphilic alkyloligosiloxanes within cylindrically and spherically confined spaces.
    Sakurai M; Shimojima A; Yamauchi Y; Kuroda K
    Langmuir; 2008 Nov; 24(22):13121-6. PubMed ID: 18942866
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Composite mesostructures by nano-confinement.
    Wu Y; Cheng G; Katsov K; Sides SW; Wang J; Tang J; Fredrickson GH; Moskovits M; Stucky GD
    Nat Mater; 2004 Nov; 3(11):816-22. PubMed ID: 15502836
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chloride ion effects on synthesis and directed assembly of copper nanoparticles in liquid and compressed alkane microemulsions.
    Kitchens CL; McLeod MC; Roberts CB
    Langmuir; 2005 May; 21(11):5166-73. PubMed ID: 15896066
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oriented attachment-based assembly of dendritic silver nanostructures at room temperature.
    Lu L; Kobayashi A; Kikkawa Y; Tawa K; Ozaki Y
    J Phys Chem B; 2006 Nov; 110(46):23234-41. PubMed ID: 17107171
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Self-assembly of silica particles in a nonionic surfactant hexagonal mesophase.
    Sharma KP; Kumaraswamy G; Ly I; Mondain-Monval O
    J Phys Chem B; 2009 Mar; 113(11):3423-30. PubMed ID: 19239205
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Controlling the size and morphology of anisotropic nanostructures of nickel borate using microemulsions and their magnetic properties.
    Menaka ; Sharma S; Ramanujachary KV; Lofland SE; Ganguli AK
    J Colloid Interface Sci; 2011 Aug; 360(2):393-7. PubMed ID: 21605870
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In-situ heating study on the structural change of surfactant-templated germanium oxide mesostructure.
    Chen X; Cai Q; Wang W; Mo G; Jiang L; Zhang K; Chen Z; Wu Z; Wu Z
    J Phys Chem B; 2008 Oct; 112(39):12297-303. PubMed ID: 18774850
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.