These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 19381568)

  • 1. In vitro selection of conformational probes for riboswitches.
    Mayer G; Famulok M
    Methods Mol Biol; 2009; 540():291-300. PubMed ID: 19381568
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conformational changes in the expression domain of the Escherichia coli thiM riboswitch.
    Rentmeister A; Mayer G; Kuhn N; Famulok M
    Nucleic Acids Res; 2007; 35(11):3713-22. PubMed ID: 17517779
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetics of riboswitch regulation studied by in vitro transcription.
    Wickiser JK
    Methods Mol Biol; 2009; 540():53-63. PubMed ID: 19381552
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of fluorescent measurements for characterization of riboswitch-ligand interactions.
    Heppell B; Mulhbacher J; Penedo JC; Lafontaine DA
    Methods Mol Biol; 2009; 540():25-37. PubMed ID: 19381550
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of the RNA backbone: structural analysis of riboswitches by in-line probing and selective 2'-hydroxyl acylation and primer extension.
    Wakeman CA; Winkler WC
    Methods Mol Biol; 2009; 540():173-91. PubMed ID: 19381560
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The dynamic nature of RNA as key to understanding riboswitch mechanisms.
    Haller A; Soulière MF; Micura R
    Acc Chem Res; 2011 Dec; 44(12):1339-48. PubMed ID: 21678902
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enzymatic ligation strategies for the preparation of purine riboswitches with site-specific chemical modifications.
    Rieder R; Höbartner C; Micura R
    Methods Mol Biol; 2009; 540():15-24. PubMed ID: 19381549
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In-line probing analysis of riboswitches.
    Regulski EE; Breaker RR
    Methods Mol Biol; 2008; 419():53-67. PubMed ID: 18369975
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Secondary structures and functional requirements for thiM riboswitches from Desulfovibrio vulgaris, Erwinia carotovora and Rhodobacter spheroides.
    Rentmeister A; Mayer G; Kuhn N; Famulok M
    Biol Chem; 2008 Feb; 389(2):127-34. PubMed ID: 18163882
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A riboswitch selective for the queuosine precursor preQ1 contains an unusually small aptamer domain.
    Roth A; Winkler WC; Regulski EE; Lee BW; Lim J; Jona I; Barrick JE; Ritwik A; Kim JN; Welz R; Iwata-Reuyl D; Breaker RR
    Nat Struct Mol Biol; 2007 Apr; 14(4):308-17. PubMed ID: 17384645
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular basis of RNA-mediated gene regulation on the adenine riboswitch by single-molecule approaches.
    Lemay JF; Penedo JC; Mulhbacher J; Lafontaine DA
    Methods Mol Biol; 2009; 540():65-76. PubMed ID: 19381553
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-throughput screens to discover synthetic riboswitches.
    Lynch SA; Topp S; Gallivan JP
    Methods Mol Biol; 2009; 540():321-33. PubMed ID: 19381570
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Riboswitches: small-molecule recognition by gene regulatory RNAs.
    Edwards TE; Klein DJ; Ferré-D'Amaré AR
    Curr Opin Struct Biol; 2007 Jun; 17(3):273-9. PubMed ID: 17574837
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mix-and-match riboswitches.
    Stoddard CD; Batey RT
    ACS Chem Biol; 2006 Dec; 1(12):751-4. PubMed ID: 17240972
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of metabolite-riboswitch interactions using nucleotide analog interference mapping and suppression.
    Soukup JK; Soukup GA
    Methods Mol Biol; 2009; 540():193-206. PubMed ID: 19381561
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evidence for a second class of S-adenosylmethionine riboswitches and other regulatory RNA motifs in alpha-proteobacteria.
    Corbino KA; Barrick JE; Lim J; Welz R; Tucker BJ; Puskarz I; Mandal M; Rudnick ND; Breaker RR
    Genome Biol; 2005; 6(8):R70. PubMed ID: 16086852
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interplay of 'induced fit' and preorganization in the ligand induced folding of the aptamer domain of the guanine binding riboswitch.
    Noeske J; Buck J; Fürtig B; Nasiri HR; Schwalbe H; Wöhnert J
    Nucleic Acids Res; 2007; 35(2):572-83. PubMed ID: 17175531
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanisms for differentiation between cognate and near-cognate ligands by purine riboswitches.
    Wacker A; Buck J; Richter C; Schwalbe H; Wöhnert J
    RNA Biol; 2012 May; 9(5):672-80. PubMed ID: 22647526
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Riboswitches: ancient and promising genetic regulators.
    Blouin S; Mulhbacher J; Penedo JC; Lafontaine DA
    Chembiochem; 2009 Feb; 10(3):400-16. PubMed ID: 19101979
    [TBL] [Abstract][Full Text] [Related]  

  • 20. RNA aptamers as genetic control devices: the potential of riboswitches as synthetic elements for regulating gene expression.
    Berens C; Groher F; Suess B
    Biotechnol J; 2015 Feb; 10(2):246-57. PubMed ID: 25676052
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.