These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
796 related articles for article (PubMed ID: 19381618)
21. Nanofabrication of densely packed metal-polymer arrays for surface-enhanced Raman spectrometry. De Jesús MA; Giesfeldt KS; Oran JM; Abu-Hatab NA; Lavrik NV; Sepaniak MJ Appl Spectrosc; 2005 Dec; 59(12):1501-8. PubMed ID: 16390590 [TBL] [Abstract][Full Text] [Related]
22. Fabrication of gold nanoparticle-embedded metal-organic framework for highly sensitive surface-enhanced Raman scattering detection. Hu Y; Liao J; Wang D; Li G Anal Chem; 2014 Apr; 86(8):3955-63. PubMed ID: 24646316 [TBL] [Abstract][Full Text] [Related]
23. Transfer printing of metal nanoparticles with controllable dimensions, placement, and reproducible surface-enhanced Raman scattering effects. Xue M; Zhang Z; Zhu N; Wang F; Zhao XS; Cao T Langmuir; 2009 Apr; 25(8):4347-51. PubMed ID: 19320428 [TBL] [Abstract][Full Text] [Related]
24. Surface enhanced Raman spectroscopy of self-assembled layers of lipid molecules on nanostructured Au and Ag substrates. Slekiene N; Ramanauskaite L; Snitka V Chem Phys Lipids; 2017 Mar; 203():12-18. PubMed ID: 28069393 [TBL] [Abstract][Full Text] [Related]
25. Surface-enhanced Raman scattering: realization of localized surface plasmon resonance using unique substrates and methods. Hossain MK; Kitahama Y; Huang GG; Han X; Ozaki Y Anal Bioanal Chem; 2009 Aug; 394(7):1747-60. PubMed ID: 19384546 [TBL] [Abstract][Full Text] [Related]
26. Surface-enhanced Raman scattering for protein detection. Han XX; Zhao B; Ozaki Y Anal Bioanal Chem; 2009 Aug; 394(7):1719-27. PubMed ID: 19267242 [TBL] [Abstract][Full Text] [Related]
27. Nanofabricated SERS-active substrates for single-molecule to virus detection in vitro: a review. Luo SC; Sivashanmugan K; Liao JD; Yao CK; Peng HC Biosens Bioelectron; 2014 Nov; 61():232-40. PubMed ID: 24892785 [TBL] [Abstract][Full Text] [Related]
29. Ordered gold nanoparticle arrays as surface-enhanced Raman spectroscopy substrates for label-free detection of nitroexplosives. Liu X; Zhao L; Shen H; Xu H; Lu L Talanta; 2011 Jan; 83(3):1023-9. PubMed ID: 21147353 [TBL] [Abstract][Full Text] [Related]
30. Template-Confined Site-Specific Electrodeposition of Nanoparticle Cluster-in-Bowl Arrays as Surface Enhanced Raman Spectroscopy Substrates. Wang Y; Yu Y; Liu Y; Yang S ACS Sens; 2018 Nov; 3(11):2343-2350. PubMed ID: 30350595 [TBL] [Abstract][Full Text] [Related]
31. A simple method for preparation of Ag nanofilm used as active, stable, and biocompatible SERS substrate by using electrostatic self-assembly. Liu R; Si M; Kang Y; Zi X; Liu Z; Zhang D J Colloid Interface Sci; 2010 Mar; 343(1):52-7. PubMed ID: 20035945 [TBL] [Abstract][Full Text] [Related]
32. Self-assembly of Au nanoparticles on PMMA template as flexible, transparent, and highly active SERS substrates. Zhong LB; Yin J; Zheng YM; Liu Q; Cheng XX; Luo FH Anal Chem; 2014 Jul; 86(13):6262-7. PubMed ID: 24873535 [TBL] [Abstract][Full Text] [Related]
33. Shell-isolated nanoparticle-enhanced Raman spectroscopy. Li JF; Huang YF; Ding Y; Yang ZL; Li SB; Zhou XS; Fan FR; Zhang W; Zhou ZY; Wu DY; Ren B; Wang ZL; Tian ZQ Nature; 2010 Mar; 464(7287):392-5. PubMed ID: 20237566 [TBL] [Abstract][Full Text] [Related]
34. Fabrication of lipophilic gold nanoparticles for studying lipids by surface enhanced Raman spectroscopy (SERS). Driver M; Li Y; Zheng J; Decker E; Julian McClements D; He L Analyst; 2014 Jul; 139(13):3352-5. PubMed ID: 24835140 [TBL] [Abstract][Full Text] [Related]
35. "Elastic" property of mesoporous silica shell: for dynamic surface enhanced Raman scattering ability monitoring of growing noble metal nanostructures via a simplified spatially confined growth method. Lin M; Wang Y; Sun X; Wang W; Chen L ACS Appl Mater Interfaces; 2015 Apr; 7(14):7516-25. PubMed ID: 25815901 [TBL] [Abstract][Full Text] [Related]
36. Highly sensitive immunoassay based on SERS using nano-Au immune probes and a nano-Ag immune substrate. Shu L; Zhou J; Yuan X; Petti L; Chen J; Jia Z; Mormile P Talanta; 2014 Jun; 123():161-8. PubMed ID: 24725879 [TBL] [Abstract][Full Text] [Related]
37. Highly efficient construction of oriented sandwich structures for surface-enhanced Raman scattering. Guo H; Xu W; Zhou J; Xu S; Lombardi JR Nanotechnology; 2013 Feb; 24(4):045608. PubMed ID: 23299563 [TBL] [Abstract][Full Text] [Related]
38. Fabrication of silver decorated anodic aluminum oxide substrate and its optical properties on surface-enhanced Raman scattering and thin film interference. Ji N; Ruan W; Wang C; Lu Z; Zhao B Langmuir; 2009 Oct; 25(19):11869-73. PubMed ID: 19522476 [TBL] [Abstract][Full Text] [Related]
39. Large-scale homogeneously distributed Ag-NPs with sub-10 nm gaps assembled on a two-layered honeycomb-like TiO2 film as sensitive and reproducible SERS substrates. Hu X; Meng G; Huang Q; Xu W; Han F; Sun K; Xu Q; Wang Z Nanotechnology; 2012 Sep; 23(38):385705. PubMed ID: 22948006 [TBL] [Abstract][Full Text] [Related]
40. Ultrathin diamond-like carbon film coated silver nanoparticles-based substrates for surface-enhanced Raman spectroscopy. Liu F; Cao Z; Tang C; Chen L; Wang Z ACS Nano; 2010 May; 4(5):2643-8. PubMed ID: 20433194 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]