These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 19381697)
1. Tryptophan Cu(I)-pi interaction fine-tunes the metal binding properties of the bacterial metallochaperone CusF. Loftin IR; Blackburn NJ; McEvoy MM J Biol Inorg Chem; 2009 Aug; 14(6):905-12. PubMed ID: 19381697 [TBL] [Abstract][Full Text] [Related]
2. Insight into the cation-π interaction at the metal binding site of the copper metallochaperone CusF. Chakravorty DK; Wang B; Ucisik MN; Merz KM J Am Chem Soc; 2011 Dec; 133(48):19330-3. PubMed ID: 22029374 [TBL] [Abstract][Full Text] [Related]
3. Unusual Cu(I)/Ag(I) coordination of Escherichia coli CusF as revealed by atomic resolution crystallography and X-ray absorption spectroscopy. Loftin IR; Franke S; Blackburn NJ; McEvoy MM Protein Sci; 2007 Oct; 16(10):2287-93. PubMed ID: 17893365 [TBL] [Abstract][Full Text] [Related]
4. Direct metal transfer between periplasmic proteins identifies a bacterial copper chaperone. Bagai I; Rensing C; Blackburn NJ; McEvoy MM Biochemistry; 2008 Nov; 47(44):11408-14. PubMed ID: 18847219 [TBL] [Abstract][Full Text] [Related]
5. Periplasmic metal-resistance protein CusF exhibits high affinity and specificity for both CuI and AgI. Kittleson JT; Loftin IR; Hausrath AC; Engelhardt KP; Rensing C; McEvoy MM Biochemistry; 2006 Sep; 45(37):11096-102. PubMed ID: 16964970 [TBL] [Abstract][Full Text] [Related]
6. Cu(I) recognition via cation-pi and methionine interactions in CusF. Xue Y; Davis AV; Balakrishnan G; Stasser JP; Staehlin BM; Focia P; Spiro TG; Penner-Hahn JE; O'Halloran TV Nat Chem Biol; 2008 Feb; 4(2):107-9. PubMed ID: 18157124 [TBL] [Abstract][Full Text] [Related]
7. Kβ Valence to Core X-ray Emission Studies of Cu(I) Binding Proteins with Mixed Methionine - Histidine Coordination. Relevance to the Reactivity of the M- and H-sites of Peptidylglycine Monooxygenase. Martin-Diaconescu V; Chacón KN; Delgado-Jaime MU; Sokaras D; Weng TC; DeBeer S; Blackburn NJ Inorg Chem; 2016 Apr; 55(7):3431-9. PubMed ID: 26965786 [TBL] [Abstract][Full Text] [Related]
8. Mechanism of ATPase-mediated Cu+ export and delivery to periplasmic chaperones: the interaction of Escherichia coli CopA and CusF. Padilla-Benavides T; George Thompson AM; McEvoy MM; Argüello JM J Biol Chem; 2014 Jul; 289(30):20492-501. PubMed ID: 24917681 [TBL] [Abstract][Full Text] [Related]
9. EPR spectroscopy identifies Met and Lys residues that are essential for the interaction between the CusB N-terminal domain and metallochaperone CusF. Meir A; Natan A; Moskovitz Y; Ruthstein S Metallomics; 2015 Jul; 7(7):1163-72. PubMed ID: 25940871 [TBL] [Abstract][Full Text] [Related]
10. Models for the Metal Transfer Complex of the N-Terminal Region of CusB and CusF. Ucisik MN; Chakravorty DK; Merz KM Biochemistry; 2015 Jul; 54(27):4226-35. PubMed ID: 26079272 [TBL] [Abstract][Full Text] [Related]
11. Interactions between CusF and CusB identified by NMR spectroscopy and chemical cross-linking coupled to mass spectrometry. Mealman TD; Bagai I; Singh P; Goodlett DR; Rensing C; Zhou H; Wysocki VH; McEvoy MM Biochemistry; 2011 Apr; 50(13):2559-66. PubMed ID: 21323389 [TBL] [Abstract][Full Text] [Related]
12. Metal Ion Capture Mechanism of a Copper Metallochaperone. Chakravorty DK; Li P; Tran TT; Bayse CA; Merz KM Biochemistry; 2016 Jan; 55(3):501-9. PubMed ID: 26690586 [TBL] [Abstract][Full Text] [Related]
13. Catalytic M Center of Copper Monooxygenases Probed by Rational Design. Effects of Selenomethionine and Histidine Substitution on Structure and Reactivity. Alwan KB; Welch EF; Blackburn NJ Biochemistry; 2019 Nov; 58(44):4436-4446. PubMed ID: 31626532 [TBL] [Abstract][Full Text] [Related]
14. N-terminal region of CusB is sufficient for metal binding and metal transfer with the metallochaperone CusF. Mealman TD; Zhou M; Affandi T; Chacón KN; Aranguren ME; Blackburn NJ; Wysocki VH; McEvoy MM Biochemistry; 2012 Aug; 51(34):6767-75. PubMed ID: 22812620 [TBL] [Abstract][Full Text] [Related]
15. Trapping intermediates in metal transfer reactions of the CusCBAF export pump of Chacón KN; Perkins J; Mathe Z; Alwan K; Ho EN; Ucisik MN; Merz KM; Blackburn NJ Commun Biol; 2018; 1():192. PubMed ID: 30456313 [No Abstract] [Full Text] [Related]
16. A novel copper-binding fold for the periplasmic copper resistance protein CusF. Loftin IR; Franke S; Roberts SA; Weichsel A; Héroux A; Montfort WR; Rensing C; McEvoy MM Biochemistry; 2005 Aug; 44(31):10533-40. PubMed ID: 16060662 [TBL] [Abstract][Full Text] [Related]
17. Copper(I) stabilization by cysteine/tryptophan motif in the extracellular domain of Ctr4. Okada M; Miura T J Inorg Biochem; 2016 Jun; 159():45-9. PubMed ID: 26908286 [TBL] [Abstract][Full Text] [Related]
18. Tracking metal ions through a Cu/Ag efflux pump assigns the functional roles of the periplasmic proteins. Chacón KN; Mealman TD; McEvoy MM; Blackburn NJ Proc Natl Acad Sci U S A; 2014 Oct; 111(43):15373-8. PubMed ID: 25313055 [TBL] [Abstract][Full Text] [Related]
19. Periplasmic oxidized-protein repair during copper stress in E. coli: A focus on the metallochaperone CusF. Vergnes A; Henry C; Grassini G; Loiseau L; El Hajj S; Denis Y; Galinier A; Vertommen D; Aussel L; Ezraty B PLoS Genet; 2022 Jul; 18(7):e1010180. PubMed ID: 35816552 [TBL] [Abstract][Full Text] [Related]
20. Copper transfer to the N-terminal domain of the Wilson disease protein (ATP7B): X-ray absorption spectroscopy of reconstituted and chaperone-loaded metal binding domains and their interaction with exogenous ligands. Ralle M; Lutsenko S; Blackburn NJ J Inorg Biochem; 2004 May; 98(5):765-74. PubMed ID: 15134922 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]