BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 19381776)

  • 1. Methods of the site-selective solid phase synthesis of peptide-derived Amadori products.
    Stefanowicz P; Kijewska M; Kapczyńska K; Szewczuk Z
    Amino Acids; 2010 Mar; 38(3):881-9. PubMed ID: 19381776
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Site-specific synthesis of Amadori-modified peptides on solid phase.
    Frolov A; Singer D; Hoffmann R
    J Pept Sci; 2006 Jun; 12(6):389-95. PubMed ID: 16342332
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Relative quantification of N(epsilon)-(Carboxymethyl)lysine, imidazolone A, and the Amadori product in glycated lysozyme by MALDI-TOF mass spectrometry.
    Kislinger T; Humeny A; Peich CC; Zhang X; Niwa T; Pischetsrieder M; Becker CM
    J Agric Food Chem; 2003 Jan; 51(1):51-7. PubMed ID: 12502384
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fragmentation behavior of glycated peptides derived from D-glucose, D-fructose and D-ribose in tandem mass spectrometry.
    Frolov A; Hoffmann P; Hoffmann R
    J Mass Spectrom; 2006 Nov; 41(11):1459-69. PubMed ID: 17063450
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Solid-phase synthesis of glucose-derived Amadori peptides.
    Frolov A; Singer D; Hoffmann R
    J Pept Sci; 2007 Dec; 13(12):862-7. PubMed ID: 17883244
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glycation of a lysine-containing tetrapeptide by D-glucose and D-fructose--influence of different reaction conditions on the formation of Amadori/Heyns products.
    Jakas A; Katić A; Bionda N; Horvat S
    Carbohydr Res; 2008 Sep; 343(14):2475-80. PubMed ID: 18656854
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Site specificity of glycation and carboxymethylation of bovine serum albumin by fructose.
    Hinton DJ; Ames JM
    Amino Acids; 2006 Jun; 30(4):425-34. PubMed ID: 16583308
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glycosylation of lysine-containing pentapeptides by glucuronic acid: new insights into the Maillard reaction.
    Horvat S; Roscić M
    Carbohydr Res; 2010 Feb; 345(3):377-84. PubMed ID: 20034621
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sites of glycation of beta B2-crystallin by glucose and fructose.
    Zhao HR; Smith JB; Jiang XY; Abraham EC
    Biochem Biophys Res Commun; 1996 Dec; 229(1):128-33. PubMed ID: 8954094
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detection of glycation sites in proteins by high-resolution mass spectrometry combined with isotopic labeling.
    Stefanowicz P; Kijewska M; Kluczyk A; Szewczuk Z
    Anal Biochem; 2010 May; 400(2):237-43. PubMed ID: 20156417
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterisation of Maillard reaction products derived from LEKFD--a pentapeptide found in β-lactoglobulin sequence, glycated with glucose--by tandem mass spectrometry, molecular orbital calculations and gel filtration chromatography coupled with continuous photodiode array.
    Yamaguchi K; Homma T; Nomi Y; Otsuka Y
    Food Chem; 2014 Feb; 145():892-902. PubMed ID: 24128561
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrospray ionization mass spectrometric analysis of complexes between peptide-derived Amadori products and borate ions.
    Kijewska M; Kluczyk A; Stefanowicz P; Szewczuk Z
    Rapid Commun Mass Spectrom; 2009 Dec; 23(24):4038-46. PubMed ID: 19924780
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acid-stable fluorescent advanced glycation end products: vesperlysines A, B, and C are formed as crosslinked products in the Maillard reaction between lysine or proteins with glucose.
    Nakamura K; Nakazawa Y; Ienaga K
    Biochem Biophys Res Commun; 1997 Mar; 232(1):227-30. PubMed ID: 9125137
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultra performance liquid chromatography-mass spectrometric determination of the site specificity of modification of beta-casein by glucose and methylglyoxal.
    Lima M; Moloney C; Ames JM
    Amino Acids; 2009 Mar; 36(3):475-81. PubMed ID: 18516664
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Advanced glycation end products/peptides: an in vivo investigation.
    Lapolla A; Fedele D; Reitano R; Bonfante L; Pastori G; Seraglia R; Tubaro M; Traldi P
    Ann N Y Acad Sci; 2005 Jun; 1043():267-75. PubMed ID: 16037247
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hypochlorous acid generates N epsilon-(carboxymethyl)lysine from Amadori products.
    Mera K; Nagai R; Haraguchi N; Fujiwara Y; Araki T; Sakata N; Otagiri M
    Free Radic Res; 2007 Jun; 41(6):713-8. PubMed ID: 17516244
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sequencing of peptide-derived Amadori products by the electron capture dissociation method.
    Stefanowicz P; Kijewska M; Szewczuk Z
    J Mass Spectrom; 2009 Jul; 44(7):1047-52. PubMed ID: 19306261
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of advanced glycation endproducts in dairy products by isotope dilution liquid chromatography-electrospray tandem mass spectrometry. The particular case of carboxymethyllysine.
    Delatour T; Hegele J; Parisod V; Richoz J; Maurer S; Steven M; Buetler T
    J Chromatogr A; 2009 Mar; 1216(12):2371-81. PubMed ID: 19181321
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A mechanistic study on the fragmentation of peptide-derived Amadori products.
    Stefanowicz P; Kapczynska K; Jaremko M; Jaremko Ł; Szewczuk Z
    J Mass Spectrom; 2009 Oct; 44(10):1500-8. PubMed ID: 19753552
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Formation of reactive intermediates from Amadori compounds under physiological conditions.
    Zyzak DV; Richardson JM; Thorpe SR; Baynes JW
    Arch Biochem Biophys; 1995 Jan; 316(1):547-54. PubMed ID: 7840665
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.