BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 19381922)

  • 1. DNA methyltransferase probing of chromatin structure within populations and on single molecules.
    Pardo C; Hoose SA; Pondugula S; Kladde MP
    Methods Mol Biol; 2009; 523():41-65. PubMed ID: 19381922
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mapping chromatin structure in vivo using DNA methyltransferases.
    Jessen WJ; Dhasarathy A; Hoose SA; Carvin CD; Risinger AL; Kladde MP
    Methods; 2004 May; 33(1):68-80. PubMed ID: 15039089
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DNA methyltransferase probing of DNA-protein interactions.
    Hoose SA; Kladde MP
    Methods Mol Biol; 2006; 338():225-44. PubMed ID: 16888362
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Single-molecule and population probing of chromatin structure using DNA methyltransferases.
    Kilgore JA; Hoose SA; Gustafson TL; Porter W; Kladde MP
    Methods; 2007 Mar; 41(3):320-32. PubMed ID: 17309843
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MethylViewer: computational analysis and editing for bisulfite sequencing and methyltransferase accessibility protocol for individual templates (MAPit) projects.
    Pardo CE; Carr IM; Hoffman CJ; Darst RP; Markham AF; Bonthron DT; Kladde MP
    Nucleic Acids Res; 2011 Jan; 39(1):e5. PubMed ID: 20959287
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Active PHO5 chromatin encompasses variable numbers of nucleosomes at individual promoters.
    Jessen WJ; Hoose SA; Kilgore JA; Kladde MP
    Nat Struct Mol Biol; 2006 Mar; 13(3):256-63. PubMed ID: 16491089
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integrated DNA methylation and chromatin structural analysis at single-molecule resolution.
    Pardo CE; Nabilsi NH; Darst RP; Kladde MP
    Methods Mol Biol; 2015; 1288():123-41. PubMed ID: 25827879
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural and functional requirements for the chromatin transition at the PHO5 promoter in Saccharomyces cerevisiae upon PHO5 activation.
    Fascher KD; Schmitz J; Hörz W
    J Mol Biol; 1993 Jun; 231(3):658-67. PubMed ID: 8515443
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nucleosome structure and positioning modulate nucleotide excision repair in the non-transcribed strand of an active gene.
    Wellinger RE; Thoma F
    EMBO J; 1997 Aug; 16(16):5046-56. PubMed ID: 9305646
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Expression of murine DNA methyltransferases Dnmt1 and Dnmt3a in the yeast Saccharomyces cerevisiae.
    Bulkowska U; Ishikawa T; Kurlandzka A; Trzcińska-Danielewicz J; Derlacz R; Fronk J
    Yeast; 2007 Oct; 24(10):871-82. PubMed ID: 17640084
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simultaneous single-molecule mapping of protein-DNA interactions and DNA methylation by MAPit.
    Pardo CE; Darst RP; Nabilsi NH; Delmas AL; Kladde MP
    Curr Protoc Mol Biol; 2011 Jul; Chapter 21():Unit 21.22. PubMed ID: 21732317
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chromatin structure of the yeast URA3 gene at high resolution provides insight into structure and positioning of nucleosomes in the chromosomal context.
    Tanaka S; Livingstone-Zatchej M; Thoma F
    J Mol Biol; 1996 Apr; 257(5):919-34. PubMed ID: 8632475
    [TBL] [Abstract][Full Text] [Related]  

  • 13. M.BssHII, a multispecific cytosine-C5-DNA-methyltransferase with unusual target recognizing properties.
    Schumann J; Walter J; Willert J; Wild C; Koch D; Trautner TA
    J Mol Biol; 1996 Apr; 257(5):949-59. PubMed ID: 8632477
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Alkylating agent and chromatin structure determine sequence context-dependent formation of alkylpurines.
    Cloutier JF; Castonguay A; O'Connor TR; Drouin R
    J Mol Biol; 2001 Feb; 306(2):169-88. PubMed ID: 11237592
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simultaneous single-molecule detection of endogenous C-5 DNA methylation and chromatin accessibility using MAPit.
    Darst RP; Pardo CE; Pondugula S; Gangaraju VK; Nabilsi NH; Bartholomew B; Kladde MP
    Methods Mol Biol; 2012; 833():125-41. PubMed ID: 22183592
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct study of DNA-protein interactions in repressed and active chromatin in living cells.
    Kladde MP; Xu M; Simpson RT
    EMBO J; 1996 Nov; 15(22):6290-300. PubMed ID: 8947052
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chromatin immunoprecipitation to study protein-DNA interactions in budding yeast.
    Ezhkova E; Tansey WP
    Methods Mol Biol; 2006; 313():225-44. PubMed ID: 16118437
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intrinsic histone-DNA interactions and low nucleosome density are important for preferential accessibility of promoter regions in yeast.
    Sekinger EA; Moqtaderi Z; Struhl K
    Mol Cell; 2005 Jun; 18(6):735-48. PubMed ID: 15949447
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanism of inhibition of DNA (cytosine C5)-methyltransferases by oligodeoxyribonucleotides containing 5,6-dihydro-5-azacytosine.
    Sheikhnejad G; Brank A; Christman JK; Goddard A; Alvarez E; Ford H; Marquez VE; Marasco CJ; Sufrin JR; O'gara M; Cheng X
    J Mol Biol; 1999 Feb; 285(5):2021-34. PubMed ID: 9925782
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Active genes in budding yeast display enhanced in vivo accessibility to foreign DNA methylases: a novel in vivo probe for chromatin structure of yeast.
    Singh J; Klar AJ
    Genes Dev; 1992 Feb; 6(2):186-96. PubMed ID: 1737615
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.