BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 19382182)

  • 1. Material properties are related to stress fracture callus and porosity of cortical bone tissue at affected and unaffected sites.
    Entwistle RC; Sammons SC; Bigley RF; Hazelwood SJ; Fyhrie DP; Gibeling JC; Stover SM
    J Orthop Res; 2009 Oct; 27(10):1272-9. PubMed ID: 19382182
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Periosteal stress-induced reactions resembling stress fractures. A radiologic and histologic study in dogs.
    Uhthoff HK; Jaworski ZF
    Clin Orthop Relat Res; 1985 Oct; (199):284-91. PubMed ID: 4042491
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An association between complete and incomplete stress fractures of the humerus in racehorses.
    Stover SM; Johnson BJ; Daft BM; Read DH; Anderson M; Barr BC; Kinde H; Moore J; Stoltz J; Ardans AA
    Equine Vet J; 1992 Jul; 24(4):260-3. PubMed ID: 1499531
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fine needle aspiration cytology of late-stage callus in stress fracture. A case report.
    Koh JS; Chung JH; Kweon MS; Lee SS; Lee SY; Lee JH
    Acta Cytol; 2001; 45(3):445-8. PubMed ID: 11393083
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gene therapy with human osteoprotegerin decreases callus remodeling with limited effects on biomechanical properties.
    Ulrich-Vinther M; Schwarz EM; Pedersen FS; Søballe K; Andreassen TT
    Bone; 2005 Dec; 37(6):751-8. PubMed ID: 16169783
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of properties of fracture callus by measurement of mineral density using micro-bone densitometry.
    Aro HT; Wippermann BW; Hodgson SF; Wahner HW; Lewallen DG; Chao EY
    J Bone Joint Surg Am; 1989 Aug; 71(7):1020-30. PubMed ID: 2760077
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A study of fracture callus material properties: relationship to the torsional strength of bone.
    Markel MD; Wikenheiser MA; Chao EY
    J Orthop Res; 1990 Nov; 8(6):843-50. PubMed ID: 2213341
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The use of radionuclide bone scanning in the diagnosis of tibial 'stress' fractures in the horse: a review of five cases.
    Pilsworth RC; Webbon PM
    Equine Vet J Suppl; 1988 Sep; (6):60-5. PubMed ID: 9079064
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Myostatin (GDF-8) deficiency increases fracture callus size, Sox-5 expression, and callus bone volume.
    Kellum E; Starr H; Arounleut P; Immel D; Fulzele S; Wenger K; Hamrick MW
    Bone; 2009 Jan; 44(1):17-23. PubMed ID: 18852073
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Osteoprotegerin treatment impairs remodeling and apparent material properties of callus tissue without influencing structural fracture strength.
    Ulrich-Vinther M; Andreassen TT
    Calcif Tissue Int; 2005 Apr; 76(4):280-6. PubMed ID: 15812581
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Magnetic resonance imaging in stress fractures and shin splints.
    Aoki Y; Yasuda K; Tohyama H; Ito H; Minami A
    Clin Orthop Relat Res; 2004 Apr; (421):260-7. PubMed ID: 15123957
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Relationship between radiologic morphology of the bone lengthening formation and its complications.
    Forriol F; Iglesias A; Arias M; Aquerreta D; Cañadell J
    J Pediatr Orthop B; 1999 Oct; 8(4):292-8. PubMed ID: 10513367
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of calcitonin on the biomechanics, histopathology, and radiography of callus formation in rats.
    Bulbul M; Esenyel CZ; Esenyel M; Ayanoglu S; Bilgic B; Gulmez T
    J Orthop Sci; 2008 Mar; 13(2):136-44. PubMed ID: 18392918
    [TBL] [Abstract][Full Text] [Related]  

  • 14. External callus development on ultrasound and its mechanical correlation.
    Ricciardi L; Perissinotto A; Dabalà M
    Ital J Orthop Traumatol; 1992; 18(2):223-9. PubMed ID: 1289288
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Early fracture callus in the diaphysis of human long bones. Histologic and ultrastructural study.
    Postacchini F; Gumina S; Perugia D; De Martino C
    Clin Orthop Relat Res; 1995 Jan; (310):218-28. PubMed ID: 7641443
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Retarded chondrogenesis in transgenic mice with a type II collagen defect results in fracture healing abnormalities.
    Hiltunen A; Metsäranta M; Virolainen P; Aro HT; Vuorio E
    Dev Dyn; 1994 Aug; 200(4):340-9. PubMed ID: 7994081
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 1Alpha,25-dihydroxy-2beta(3-hydroxypropoxy)vitamin D3 (ED-71) suppressed callus remodeling but did not interfere with fracture healing in rat femora.
    Cao Y; Mori S; Mashiba T; Kaji Y; Manabe T; Iwata K; Miyamoto K; Komatsubara S; Yamamoto T
    Bone; 2007 Jan; 40(1):132-9. PubMed ID: 16962400
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Human parathyroid hormone (1-34) accelerates natural fracture healing process in the femoral osteotomy model of cynomolgus monkeys.
    Manabe T; Mori S; Mashiba T; Kaji Y; Iwata K; Komatsubara S; Seki A; Sun YX; Yamamoto T
    Bone; 2007 Jun; 40(6):1475-82. PubMed ID: 17369013
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Sonographic follow-up of secondary fracture healing. Initial experiences with morphologic and semiquantitative assessment of periosteal callus formation].
    Hannesschläger G; Reschauer R
    Rofo; 1990 Aug; 153(2):113-9. PubMed ID: 2168063
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Skeletal self-repair: stress fracture healing by rapid formation and densification of woven bone.
    Uthgenannt BA; Kramer MH; Hwu JA; Wopenka B; Silva MJ
    J Bone Miner Res; 2007 Oct; 22(10):1548-56. PubMed ID: 17576168
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.