These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

71 related articles for article (PubMed ID: 19382767)

  • 1. Knowledge-based approach to de novo design using reaction vectors.
    Patel H; Bodkin MJ; Chen B; Gillet VJ
    J Chem Inf Model; 2009 May; 49(5):1163-84. PubMed ID: 19382767
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mining electronic laboratory notebooks: analysis, retrosynthesis, and reaction based enumeration.
    Christ CD; Zentgraf M; Kriegl JM
    J Chem Inf Model; 2012 Jul; 52(7):1745-56. PubMed ID: 22657734
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular complexity analysis of de novo designed ligands.
    Boda K; Johnson AP
    J Med Chem; 2006 Oct; 49(20):5869-79. PubMed ID: 17004702
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Concept of combinatorial de novo design of drug-like molecules by particle swarm optimization.
    Hartenfeller M; Proschak E; Schüller A; Schneider G
    Chem Biol Drug Des; 2008 Jul; 72(1):16-26. PubMed ID: 18564216
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fragment-based de novo ligand design by multiobjective evolutionary optimization.
    Dey F; Caflisch A
    J Chem Inf Model; 2008 Mar; 48(3):679-90. PubMed ID: 18307332
    [TBL] [Abstract][Full Text] [Related]  

  • 6. FOG: Fragment Optimized Growth algorithm for the de novo generation of molecules occupying druglike chemical space.
    Kutchukian PS; Lou D; Shakhnovich EI
    J Chem Inf Model; 2009 Jul; 49(7):1630-42. PubMed ID: 19527020
    [TBL] [Abstract][Full Text] [Related]  

  • 7. RENATE: A Pseudo-retrosynthetic Tool for Synthetically Accessible de novo Design.
    Ghiandoni GM; Bodkin MJ; Chen B; Hristozov D; Wallace JEA; Webster J; Gillet VJ
    Mol Inform; 2022 Apr; 41(4):e2100207. PubMed ID: 34750989
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fragment shuffling: an automated workflow for three-dimensional fragment-based ligand design.
    Nisius B; Rester U
    J Chem Inf Model; 2009 May; 49(5):1211-22. PubMed ID: 19413347
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The quest for novel chemical matter and the contribution of computer-aided de novo design.
    Pirard B
    Expert Opin Drug Discov; 2011 Mar; 6(3):225-31. PubMed ID: 22647201
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthetically accessible de novo design using reaction vectors: Application to PARP1 inhibitors.
    Ghiandoni GM; Flanagan SR; Bodkin MJ; Nizi MG; Galera-Prat A; Brai A; Chen B; Wallace JEA; Hristozov D; Webster J; Manfroni G; Lehtiö L; Tabarrini O; Gillet VJ
    Mol Inform; 2024 Apr; 43(4):e202300183. PubMed ID: 38258328
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancing reaction-based de novo design using a multi-label reaction class recommender.
    Ghiandoni GM; Bodkin MJ; Chen B; Hristozov D; Wallace JEA; Webster J; Gillet VJ
    J Comput Aided Mol Des; 2020 Jul; 34(7):783-803. PubMed ID: 32112286
    [TBL] [Abstract][Full Text] [Related]  

  • 12. De novo generation of molecular structures using optimization to select graphs on a given lattice.
    Bywater RP; Poulsen TA; Røgen P; Hjorth PG
    J Chem Inf Comput Sci; 2004; 44(3):856-61. PubMed ID: 15154750
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automatic determination of reaction mappings and reaction center information. 2. Validation on a biochemical reaction database.
    Apostolakis J; Sacher O; Körner R; Gasteiger J
    J Chem Inf Model; 2008 Jun; 48(6):1190-8. PubMed ID: 18533714
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinase inhibitor data modeling and de novo inhibitor design with fragment approaches.
    Vieth M; Erickson J; Wang J; Webster Y; Mader M; Higgs R; Watson I
    J Med Chem; 2009 Oct; 52(20):6456-66. PubMed ID: 19791746
    [TBL] [Abstract][Full Text] [Related]  

  • 15. E-novo: an automated workflow for efficient structure-based lead optimization.
    Pearce BC; Langley DR; Kang J; Huang H; Kulkarni A
    J Chem Inf Model; 2009 Jul; 49(7):1797-809. PubMed ID: 19552372
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanistic insights on the cycloisomerization of polyunsaturated precursors catalyzed by platinum and gold complexes.
    Soriano E; Marco-Contelles J
    Acc Chem Res; 2009 Aug; 42(8):1026-36. PubMed ID: 19480448
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Alport syndrome. Molecular genetic aspects.
    Hertz JM
    Dan Med Bull; 2009 Aug; 56(3):105-52. PubMed ID: 19728970
    [TBL] [Abstract][Full Text] [Related]  

  • 18. De novo design of molecular architectures by evolutionary assembly of drug-derived building blocks.
    Schneider G; Lee ML; Stahl M; Schneider P
    J Comput Aided Mol Des; 2000 Jul; 14(5):487-94. PubMed ID: 10896320
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A convex optimization approach for depth estimation under illumination variation.
    Miled W; Pesquet JC; Parent M
    IEEE Trans Image Process; 2009 Apr; 18(4):813-30. PubMed ID: 19278920
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimization of catalysts using specific, description-based genetic algorithms.
    Holena M; Cukic T; Rodemerck U; Linke D
    J Chem Inf Model; 2008 Feb; 48(2):274-82. PubMed ID: 18254615
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.