BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 19382796)

  • 1. Taking advantage of nonspecific trypsin cleavages for the identification of seed storage proteins in cereals.
    Sergeant K; Pinheiro C; Hausman JF; Ricardo CP; Renaut J
    J Proteome Res; 2009 Jun; 8(6):3182-90. PubMed ID: 19382796
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative proteomical analysis of zygotic embryo and endosperm from Coffea arabica seeds.
    Koshino LL; Gomes CP; Silva LP; Eira MT; Bloch C; Franco OL; Mehta A
    J Agric Food Chem; 2008 Nov; 56(22):10922-6. PubMed ID: 18959416
    [TBL] [Abstract][Full Text] [Related]  

  • 3. New protein isoforms identified within Arabidopsis thaliana seed oil bodies combining chymotrypsin/trypsin digestion and peptide fragmentation analysis.
    Vermachova M; Purkrtova Z; Santrucek J; Jolivet P; Chardot T; Kodicek M
    Proteomics; 2011 Aug; 11(16):3430-4. PubMed ID: 21751352
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of the electron capture dissociation fragmentation behavior of doubly and triply protonated peptides from trypsin, Glu-C, and chymotrypsin digestion.
    Kalli A; Håkansson K
    J Proteome Res; 2008 Jul; 7(7):2834-44. PubMed ID: 18549259
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Applying multiple proteases to direct digestion of hundred-scale cell samples for proteome analysis.
    Chen Q; Yan G; Zhang X
    Rapid Commun Mass Spectrom; 2015 Aug; 29(15):1389-94. PubMed ID: 26147478
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Seed storage proteins as a system for teaching protein identification by mass spectrometry in biochemistry laboratory.
    Wilson KA; Tan-Wilson A
    Biochem Mol Biol Educ; 2013; 41(2):79-86. PubMed ID: 23495011
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chloroform-assisted phenol extraction improving proteome profiling of maize embryos through selective depletion of high-abundance storage proteins.
    Xiong E; Wu X; Yang L; Gong F; Tai F; Wang W
    PLoS One; 2014; 9(11):e112724. PubMed ID: 25386674
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of different proteomic protocols on degree of high-coverage identification of nonspecific lipid transfer protein 1 modified during malting.
    Chmelik J; Zidkova J; Rehulka P; Petry-Podgorska I; Bobalova J
    Electrophoresis; 2009 Feb; 30(3):560-7. PubMed ID: 19156768
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combining chymotrypsin/trypsin digestion to identify hydrophobic proteins from oil bodies.
    Vermachova M; Purkrtova Z; Santrucek J; Jolivet P; Chardot T; Kodicek M
    Methods Mol Biol; 2014; 1072():185-98. PubMed ID: 24136523
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proteome profile of the developing maize (Zea mays L.) rachis.
    Pechanova O; Pechan T; Ozkan S; McCarthy FM; Williams WP; Luthe DS
    Proteomics; 2010 Aug; 10(16):3051-5. PubMed ID: 20662101
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficient and specific trypsin digestion of microgram to nanogram quantities of proteins in organic-aqueous solvent systems.
    Strader MB; Tabb DL; Hervey WJ; Pan C; Hurst GB
    Anal Chem; 2006 Jan; 78(1):125-34. PubMed ID: 16383319
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Complete sequencing of GABAA receptor subunit beta 3 by a rapid technique following in-gel digestion of the protein.
    Kang SU; Lubec G
    Electrophoresis; 2009 Jun; 30(12):2159-67. PubMed ID: 19582715
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison between the matrices alpha-cyano-4-hydroxycinnamic acid and 4-chloro-alpha-cyanocinnamic acid for trypsin, chymotrypsin, and pepsin digestions by MALDI-TOF mass spectrometry.
    Jaskolla TW; Papasotiriou DG; Karas M
    J Proteome Res; 2009 Jul; 8(7):3588-97. PubMed ID: 19435303
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rearrangement of terminal amino acid residues in peptides by protease-catalyzed intramolecular transpeptidation.
    Fodor S; Zhang Z
    Anal Biochem; 2006 Sep; 356(2):282-90. PubMed ID: 16859627
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Isolation and properties of a Kunitz-type protein inhibitor obtained from Pithecellobium dulce seeds.
    Delgado-Vargas F; López-Valdés HE; Valdés-Rodríguez S; Blanco-Labra A; Chagolla-López A; López-Valenzuela Ede J
    J Agric Food Chem; 2004 Oct; 52(20):6115-21. PubMed ID: 15453675
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification and characterization of a Bowman-Birk inhibitor active towards trypsin but not chymotrypsin in Lupinus albus seeds.
    Scarafoni A; Consonni A; Galbusera V; Negri A; Tedeschi G; Rasmussen P; Magni C; Duranti M
    Phytochemistry; 2008 Jun; 69(9):1820-5. PubMed ID: 18474386
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A rapid and simple procedure for the depletion of abundant storage proteins from legume seeds to advance proteome analysis: a case study using Glycine max.
    Krishnan HB; Oehrle NW; Natarajan SS
    Proteomics; 2009 Jun; 9(11):3174-88. PubMed ID: 19526550
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A method for analyzing lipid-modified proteins with mass spectrometry.
    Ujihara T; Sakurai I; Mizusawa N; Wada H
    Anal Biochem; 2008 Mar; 374(2):429-31. PubMed ID: 18078799
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Isolation, purification, and identification of protein associated with corn fiber gum.
    Yadav MP; Nuñez A; Hicks KB
    J Agric Food Chem; 2011 Dec; 59(24):13289-94. PubMed ID: 22035048
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On-line multi-enzymatic approach for improved sequence coverage in protein analysis.
    Temporini C; Calleri E; Cabrera K; Felix G; Massolini G
    J Sep Sci; 2009 Apr; 32(8):1120-8. PubMed ID: 19301325
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.