BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 19382881)

  • 1. Poly(alkylcyanoacrylate) nanoparticles for enhanced delivery of therapeutics - is there real potential?
    Graf A; McDowell A; Rades T
    Expert Opin Drug Deliv; 2009 Apr; 6(4):371-87. PubMed ID: 19382881
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A journey through the emergence of nanomedicines with poly(alkylcyanoacrylate) based nanoparticles.
    Vauthier C
    J Drug Target; 2019; 27(5-6):502-524. PubMed ID: 30889991
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of Peptide Polymer Interactions in Poly(alkylcyanoacrylate) Nanoparticles: A Mass Spectrometric Approach.
    Kafka AP; Kleffmann T; Rades T; McDowell A
    Curr Drug Deliv; 2010 Jul; 7(3):208-15. PubMed ID: 20497104
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design aspects of poly(alkylcyanoacrylate) nanoparticles for drug delivery.
    Vauthier C; Labarre D; Ponchel G
    J Drug Target; 2007 Dec; 15(10):641-63. PubMed ID: 18041633
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protein delivery using nanoparticles based on microemulsions with different structure-types.
    Graf A; Jack KS; Whittaker AK; Hook SM; Rades T
    Eur J Pharm Sci; 2008 Apr; 33(4-5):434-44. PubMed ID: 18329862
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Using different structure types of microemulsions for the preparation of poly(alkylcyanoacrylate) nanoparticles by interfacial polymerization.
    Krauel K; Davies NM; Hook S; Rades T
    J Control Release; 2005 Aug; 106(1-2):76-87. PubMed ID: 15967536
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preparation of poly (alkylcyanoacrylate) nanoparticles by polymerization of water-free microemulsions.
    Krauel K; Graf A; Hook SM; Davies NM; Rades T
    J Microencapsul; 2006 Aug; 23(5):499-512. PubMed ID: 16980272
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Magnetite/poly(alkylcyanoacrylate) (core/shell) nanoparticles as 5-Fluorouracil delivery systems for active targeting.
    Arias JL; Gallardo V; Ruiz MA; Delgado AV
    Eur J Pharm Biopharm; 2008 May; 69(1):54-63. PubMed ID: 18164927
    [TBL] [Abstract][Full Text] [Related]  

  • 9. HPLC quantification of doxorubicin in plasma and tissues of rats treated with doxorubicin loaded poly(alkylcyanoacrylate) nanoparticles.
    Alhareth K; Vauthier C; Gueutin C; Ponchel G; Moussa F
    J Chromatogr B Analyt Technol Biomed Life Sci; 2012 Mar; 887-888():128-32. PubMed ID: 22341684
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cellular uptake and intracellular degradation of poly(alkyl cyanoacrylate) nanoparticles.
    Sulheim E; Baghirov H; von Haartman E; Bøe A; Åslund AK; Mørch Y; Davies Cde L
    J Nanobiotechnology; 2016 Jan; 14():1. PubMed ID: 26743777
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Increasing entrapment of peptides within poly(alkyl cyanoacrylate) nanoparticles prepared from water-in-oil microemulsions by copolymerization.
    Liang M; Davies NM; Toth I
    Int J Pharm; 2008 Oct; 362(1-2):141-6. PubMed ID: 18598746
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oral insulin delivery using nanoparticles based on microemulsions with different structure-types: optimisation and in vivo evaluation.
    Graf A; Rades T; Hook SM
    Eur J Pharm Sci; 2009 Apr; 37(1):53-61. PubMed ID: 19167488
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Heparin coated poly(alkylcyanoacrylate) nanoparticles coupled to hemoglobin: a new oxygen carrier.
    Chauvierre C; Marden MC; Vauthier C; Labarre D; Couvreur P; Leclerc L
    Biomaterials; 2004 Jul; 25(15):3081-6. PubMed ID: 14967542
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microemulsions containing lecithin and sugar-based surfactants: nanoparticle templates for delivery of proteins and peptides.
    Graf A; Ablinger E; Peters S; Zimmer A; Hook S; Rades T
    Int J Pharm; 2008 Feb; 350(1-2):351-60. PubMed ID: 17923347
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dermal peptide delivery using colloidal carrier systems.
    Goebel A; Neubert RH
    Skin Pharmacol Physiol; 2008; 21(1):3-9. PubMed ID: 17912018
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Smart polymers for controlled delivery of proteins and peptides: a review of patents.
    Fogueri LR; Singh S
    Recent Pat Drug Deliv Formul; 2009 Jan; 3(1):40-8. PubMed ID: 19149728
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent Advances in Encapsulation, Protection, and Oral Delivery of Bioactive Proteins and Peptides using Colloidal Systems.
    Perry SL; McClements DJ
    Molecules; 2020 Mar; 25(5):. PubMed ID: 32150848
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of poly(ethylene glycol) coating and monomer type on poly(alkyl cyanoacrylate) nanoparticle interactions with lipid monolayers and cells.
    Baghirov H; Melikishvili S; Mørch Y; Sulheim E; Åslund AKO; Hianik T; de Lange Davies C
    Colloids Surf B Biointerfaces; 2017 Feb; 150():373-383. PubMed ID: 27842930
    [TBL] [Abstract][Full Text] [Related]  

  • 19. From poly(alkyl cyanoacrylate) to squalene as core material for the design of nanomedicines.
    Mura S; Fattal E; Nicolas J
    J Drug Target; 2019; 27(5-6):470-501. PubMed ID: 30720372
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stimuli-Responsive Polymeric Systems for Controlled Protein and Peptide Delivery: Future Implications for Ocular Delivery.
    Mahlumba P; Choonara YE; Kumar P; du Toit LC; Pillay V
    Molecules; 2016 Jul; 21(8):. PubMed ID: 27483234
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.