BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 19383331)

  • 1. 3-Bromopyruvate as inhibitor of tumour cell energy metabolism and chemopotentiator of platinum drugs.
    Ihrlund LS; Hernlund E; Khan O; Shoshan MC
    Mol Oncol; 2008 Jun; 2(1):94-101. PubMed ID: 19383331
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 3-Bromopyruvate (3BP) a fast acting, promising, powerful, specific, and effective "small molecule" anti-cancer agent taken from labside to bedside: introduction to a special issue.
    Pedersen PL
    J Bioenerg Biomembr; 2012 Feb; 44(1):1-6. PubMed ID: 22382780
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Local delivery of cancer-cell glycolytic inhibitors in high-grade glioma.
    Wicks RT; Azadi J; Mangraviti A; Zhang I; Hwang L; Joshi A; Bow H; Hutt-Cabezas M; Martin KL; Rudek MA; Zhao M; Brem H; Tyler BM
    Neuro Oncol; 2015 Jan; 17(1):70-80. PubMed ID: 25053853
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Safety and outcome of treatment of metastatic melanoma using 3-bromopyruvate: a concise literature review and case study.
    El Sayed SM; Mohamed WG; Seddik MA; Ahmed AS; Mahmoud AG; Amer WH; Helmy Nabo MM; Hamed AR; Ahmed NS; Abd-Allah AA
    Chin J Cancer; 2014 Jul; 33(7):356-64. PubMed ID: 24636230
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 3-Bromopyruvate: targets and outcomes.
    Shoshan MC
    J Bioenerg Biomembr; 2012 Feb; 44(1):7-15. PubMed ID: 22298255
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Targets of 3-bromopyruvate, a new, energy depleting, anticancer agent.
    Dell'Antone P
    Med Chem; 2009 Nov; 5(6):491-6. PubMed ID: 19534685
    [TBL] [Abstract][Full Text] [Related]  

  • 7. L-Glyceraldehyde Inhibits Neuroblastoma Cell Growth via a Multi-Modal Mechanism on Metabolism and Signaling.
    Forbes M; Kempa R; Mastrobuoni G; Rayman L; Pietzke M; Bayram S; Arlt B; Spruessel A; Deubzer HE; Kempa S
    Cancers (Basel); 2024 Apr; 16(9):. PubMed ID: 38730615
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Targeting the Warburg effect: A revisited perspective from molecular mechanisms to traditional and innovative therapeutic strategies in cancer.
    Liao M; Yao D; Wu L; Luo C; Wang Z; Zhang J; Liu B
    Acta Pharm Sin B; 2024 Mar; 14(3):953-1008. PubMed ID: 38487001
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of Glycolytic and Glutamine Metabolism Reprogramming on the Proliferation, Invasion, and Apoptosis Resistance through Modulation of Signaling Pathways in Glioblastoma.
    Trejo-Solis C; Silva-Adaya D; Serrano-García N; Magaña-Maldonado R; Jimenez-Farfan D; Ferreira-Guerrero E; Cruz-Salgado A; Castillo-Rodriguez RA
    Int J Mol Sci; 2023 Dec; 24(24):. PubMed ID: 38139462
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bioenergetic alteration in gastrointestinal cancers: The good, the bad and the ugly.
    Chu YD; Chen CW; Lai MW; Lim SN; Lin WR
    World J Gastroenterol; 2023 Aug; 29(29):4499-4527. PubMed ID: 37621758
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anti-Glycolytic Drugs in the Treatment of Hepatocellular Carcinoma: Systemic and Locoregional Options.
    Pourbaghi M; Haghani L; Zhao K; Karimi A; Marinelli B; Erinjeri JP; Geschwind JH; Yarmohammadi H
    Curr Oncol; 2023 Jul; 30(7):6609-6622. PubMed ID: 37504345
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of Glucose Metabolic Reprogramming in Breast Cancer Progression and Drug Resistance.
    Lei P; Wang W; Sheldon M; Sun Y; Yao F; Ma L
    Cancers (Basel); 2023 Jun; 15(13):. PubMed ID: 37444501
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cardiomyocyte infection by
    Venturini G; Alvim JM; Padilha K; Toepfer CN; Gorham JM; Wasson LK; Biagi D; Schenkman S; Carvalho VM; Salgueiro JS; Cardozo KHM; Krieger JE; Pereira AC; Seidman JG; Seidman CE
    Front Cell Infect Microbiol; 2023; 13():1098457. PubMed ID: 36814444
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Targeting Glucose Metabolism Enzymes in Cancer Treatment: Current and Emerging Strategies.
    Zhang Y; Li Q; Huang Z; Li B; Nice EC; Huang C; Wei L; Zou B
    Cancers (Basel); 2022 Sep; 14(19):. PubMed ID: 36230492
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The combined effect of dichloroacetate and 3-bromopyruvate on glucose metabolism in colorectal cancer cell line, HT-29; the mitochondrial pathway apoptosis.
    Nikravesh H; Khodayar MJ; Behmanesh B; Mahdavinia M; Teimoori A; Alboghobeish S; Zeidooni L
    BMC Cancer; 2021 Aug; 21(1):903. PubMed ID: 34364387
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mitochondrial Function Are Disturbed in the Presence of the Anticancer Drug, 3-Bromopyruvate.
    Cal M; Matyjaszczyk I; Filik K; Ogórek R; Ko Y; Ułaszewski S
    Int J Mol Sci; 2021 Jun; 22(12):. PubMed ID: 34205737
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development and Evaluation of Paclitaxel and Curcumin Dry Powder for Inhalation Lung Cancer Treatment.
    Lee WH; Loo CY; Traini D; Young PM
    Pharmaceutics; 2020 Dec; 13(1):. PubMed ID: 33375181
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The efficacy of the anticancer 3-bromopyruvate is potentiated by antimycin and menadione by unbalancing mitochondrial ROS production and disposal in U118 glioblastoma cells.
    Petricciuolo M; Davidescu M; Fettucciari K; Gatticchi L; Brancorsini S; Roberti R; Corazzi L; Macchioni L
    Heliyon; 2020 Dec; 6(12):e05741. PubMed ID: 33364504
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Targeting Metabolic Plasticity and Flexibility Dynamics for Cancer Therapy.
    Fendt SM; Frezza C; Erez A
    Cancer Discov; 2020 Dec; 10(12):1797-1807. PubMed ID: 33139243
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Targeting Metabolism in Cancer Cells and the Tumour Microenvironment for Cancer Therapy.
    Li J; Eu JQ; Kong LR; Wang L; Lim YC; Goh BC; Wong ALA
    Molecules; 2020 Oct; 25(20):. PubMed ID: 33092283
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.