These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
189 related articles for article (PubMed ID: 19383454)
21. Direct observation of phenylalanine orientations in statherin bound to hydroxyapatite surfaces. Weidner T; Dubey M; Breen NF; Ash J; Baio JE; Jaye C; Fischer DA; Drobny GP; Castner DG J Am Chem Soc; 2012 May; 134(21):8750-3. PubMed ID: 22563672 [TBL] [Abstract][Full Text] [Related]
22. A (13)C{(31)P} REDOR NMR investigation of the role of glutamic acid residues in statherin- hydroxyapatite recognition. Ndao M; Ash JT; Breen NF; Goobes G; Stayton PS; Drobny GP Langmuir; 2009 Oct; 25(20):12136-43. PubMed ID: 19678690 [TBL] [Abstract][Full Text] [Related]
23. A REDOR NMR study of a phosphorylated statherin fragment bound to hydroxyapatite crystals. Gibson JM; Raghunathan V; Popham JM; Stayton PS; Drobny GP J Am Chem Soc; 2005 Jul; 127(26):9350-1. PubMed ID: 15984845 [TBL] [Abstract][Full Text] [Related]
24. Using the RosettaSurface algorithm to predict protein structure at mineral surfaces. Pacella MS; Koo da CE; Thottungal RA; Gray JJ Methods Enzymol; 2013; 532():343-66. PubMed ID: 24188775 [TBL] [Abstract][Full Text] [Related]
26. Interaction of Statherin-Derived Peptide with the Surface of Hydroxyapatite: Perspectives Based on Molecular Dynamics Simulations. Ferrari CR; de Oliveira TE; Buzalaf MAR; Netz PA Caries Res; 2024; 58(4):431-443. PubMed ID: 38763135 [TBL] [Abstract][Full Text] [Related]
28. An in vitro scanning microradiography study of the reduction in hydroxyapatite demineralization rate by statherin-like peptides as a function of increasing N-terminal length. Shah S; Kosoric J; Hector MP; Anderson P Eur J Oral Sci; 2011 Dec; 119 Suppl 1():13-8. PubMed ID: 22243221 [TBL] [Abstract][Full Text] [Related]
29. Active domains of salivary statherin on apatitic surfaces for binding to Fusobacterium nucleatum cells. Sekine S; Kataoka K; Tanaka M; Nagata H; Kawakami T; Akaji K; Aimoto S; Shizukuishi S Microbiology (Reading); 2004 Jul; 150(Pt 7):2373-2379. PubMed ID: 15256578 [TBL] [Abstract][Full Text] [Related]
31. Structural characteristics of human salivary statherin: a model for boundary lubrication at the enamel surface. Ramasubbu N; Thomas LM; Bhandary KK; Levine MJ Crit Rev Oral Biol Med; 1993; 4(3-4):363-70. PubMed ID: 8373992 [TBL] [Abstract][Full Text] [Related]
32. Controls of nature: Secondary, tertiary, and quaternary structure of the enamel protein amelogenin in solution and on hydroxyapatite. Shaw WJ; Tarasevich BJ; Buchko GW; Arachchige RMJ; Burton SD J Struct Biol; 2020 Dec; 212(3):107630. PubMed ID: 32979496 [TBL] [Abstract][Full Text] [Related]
33. Structural domains of Porphyromonas gingivalis recombinant fimbrillin that mediate binding to salivary proline-rich protein and statherin. Amano A; Sharma A; Lee JY; Sojar HT; Raj PA; Genco RJ Infect Immun; 1996 May; 64(5):1631-7. PubMed ID: 8613371 [TBL] [Abstract][Full Text] [Related]
34. Multiple forms of statherin in human salivary secretions. Jensen JL; Lamkin MS; Troxler RF; Oppenheim FG Arch Oral Biol; 1991; 36(7):529-34. PubMed ID: 1663737 [TBL] [Abstract][Full Text] [Related]
35. Sum frequency generation and solid-state NMR study of the structure, orientation, and dynamics of polystyrene-adsorbed peptides. Weidner T; Breen NF; Li K; Drobny GP; Castner DG Proc Natl Acad Sci U S A; 2010 Jul; 107(30):13288-93. PubMed ID: 20628016 [TBL] [Abstract][Full Text] [Related]
36. A solid-state NMR study of the dynamics and interactions of phenylalanine rings in a statherin fragment bound to hydroxyapatite crystals. Gibson JM; Popham JM; Raghunathan V; Stayton PS; Drobny GP J Am Chem Soc; 2006 Apr; 128(16):5364-70. PubMed ID: 16620107 [TBL] [Abstract][Full Text] [Related]
37. Temporal and compositional characteristics of salivary protein adsorption to hydroxyapatite. Lamkin MS; Arancillo AA; Oppenheim FG J Dent Res; 1996 Feb; 75(2):803-8. PubMed ID: 8655778 [TBL] [Abstract][Full Text] [Related]
38. Adsorption processes of Gly and Glu amino acids on hydroxyapatite surfaces at the atomic level. Pan H; Tao J; Xu X; Tang R Langmuir; 2007 Aug; 23(17):8972-81. PubMed ID: 17658861 [TBL] [Abstract][Full Text] [Related]
39. Binding of Porphyromonas gingivalis fimbriae to proline-rich glycoproteins in parotid saliva via a domain shared by major salivary components. Amano A; Shizukuishi S; Horie H; Kimura S; Morisaki I; Hamada S Infect Immun; 1998 May; 66(5):2072-7. PubMed ID: 9573091 [TBL] [Abstract][Full Text] [Related]
40. The influence of histatin-5 fragments on the mineralization of hydroxyapatite. Richardson CF; Johnsson M; Raj PA; Levine MJ; Nancollas GH Arch Oral Biol; 1993 Nov; 38(11):997-1002. PubMed ID: 8297263 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]