These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
211 related articles for article (PubMed ID: 19383463)
1. Structure of a double transmembrane fragment of a G-protein-coupled receptor in micelles. Neumoin A; Cohen LS; Arshava B; Tantry S; Becker JM; Zerbe O; Naider F Biophys J; 2009 Apr; 96(8):3187-96. PubMed ID: 19383463 [TBL] [Abstract][Full Text] [Related]
2. Expression and biophysical analysis of two double-transmembrane domain-containing fragments from a yeast G protein-coupled receptor. Cohen LS; Arshava B; Estephan R; Englander J; Kim H; Hauser M; Zerbe O; Ceruso M; Becker JM; Naider F Biopolymers; 2008; 90(2):117-30. PubMed ID: 18260136 [TBL] [Abstract][Full Text] [Related]
3. Comparison of fragments comprising the first two helices of the human Y4 and the yeast Ste2p G-protein-coupled receptors. Shao X; Zou C; Naider F; Zerbe O Biophys J; 2012 Aug; 103(4):817-26. PubMed ID: 22947943 [TBL] [Abstract][Full Text] [Related]
5. NMR studies in dodecylphosphocholine of a fragment containing the seventh transmembrane helix of a G-protein-coupled receptor from Saccharomyces cerevisiae. Neumoin A; Arshava B; Becker J; Zerbe O; Naider F Biophys J; 2007 Jul; 93(2):467-82. PubMed ID: 17449670 [TBL] [Abstract][Full Text] [Related]
6. Structural characterization of triple transmembrane domain containing fragments of a yeast G protein-coupled receptor in an organic : aqueous environment by solution-state NMR spectroscopy. Fracchiolla KE; Cohen LS; Arshava B; Poms M; Zerbe O; Becker JM; Naider F J Pept Sci; 2015 Mar; 21(3):212-22. PubMed ID: 25645975 [TBL] [Abstract][Full Text] [Related]
7. Biosynthesis and NMR analysis of a 73-residue domain of a Saccharomyces cerevisiae G protein-coupled receptor. Estephan R; Englander J; Arshava B; Samples KL; Becker JM; Naider F Biochemistry; 2005 Sep; 44(35):11795-810. PubMed ID: 16128581 [TBL] [Abstract][Full Text] [Related]
8. Comparative NMR analysis of an 80-residue G protein-coupled receptor fragment in two membrane mimetic environments. Cohen LS; Arshava B; Neumoin A; Becker JM; Güntert P; Zerbe O; Naider F Biochim Biophys Acta; 2011 Nov; 1808(11):2674-84. PubMed ID: 21791199 [TBL] [Abstract][Full Text] [Related]
9. Changes in conformation at the cytoplasmic ends of the fifth and sixth transmembrane helices of a yeast G protein-coupled receptor in response to ligand binding. Umanah GK; Huang LY; Maccarone JM; Naider F; Becker JM Biochemistry; 2011 Aug; 50(32):6841-54. PubMed ID: 21728340 [TBL] [Abstract][Full Text] [Related]
10. The first extracellular loop of the Saccharomyces cerevisiae G protein-coupled receptor Ste2p undergoes a conformational change upon ligand binding. Hauser M; Kauffman S; Lee BK; Naider F; Becker JM J Biol Chem; 2007 Apr; 282(14):10387-97. PubMed ID: 17293349 [TBL] [Abstract][Full Text] [Related]
11. Architecture of the hepatitis C virus E1 glycoprotein transmembrane domain studied by NMR. Zazrin H; Shaked H; Chill JH Biochim Biophys Acta; 2014 Mar; 1838(3):784-92. PubMed ID: 24192053 [TBL] [Abstract][Full Text] [Related]
12. Large multiple transmembrane domain fragments of a G protein-coupled receptor: biosynthesis, purification, and biophysical studies. Potetinova Z; Tantry S; Cohen LS; Caroccia KE; Arshava B; Becker JM; Naider F Biopolymers; 2012; 98(5):485-500. PubMed ID: 23203693 [TBL] [Abstract][Full Text] [Related]
13. Expression and biophysical analysis of a triple-transmembrane domain-containing fragment from a yeast G protein-coupled receptor. Caroccia KE; Estephan R; Cohen LS; Arshava B; Hauser M; Zerbe O; Becker JM; Naider F Biopolymers; 2011; 96(6):757-71. PubMed ID: 21695690 [TBL] [Abstract][Full Text] [Related]
14. Identification of specific transmembrane residues and ligand-induced interface changes involved in homo-dimer formation of a yeast G protein-coupled receptor. Kim H; Lee BK; Naider F; Becker JM Biochemistry; 2009 Nov; 48(46):10976-87. PubMed ID: 19839649 [TBL] [Abstract][Full Text] [Related]
15. Characterization of peptides corresponding to the seven transmembrane domains of human adenosine A2a receptor. Lazarova T; Brewin KA; Stoeber K; Robinson CR Biochemistry; 2004 Oct; 43(40):12945-54. PubMed ID: 15461468 [TBL] [Abstract][Full Text] [Related]
16. Structural organization and interactions of transmembrane domains in tetraspanin proteins. Kovalenko OV; Metcalf DG; DeGrado WF; Hemler ME BMC Struct Biol; 2005 Jun; 5():11. PubMed ID: 15985154 [TBL] [Abstract][Full Text] [Related]
17. Biosynthesis and NMR-studies of a double transmembrane domain from the Y4 receptor, a human GPCR. Zou C; Naider F; Zerbe O J Biomol NMR; 2008 Dec; 42(4):257-69. PubMed ID: 18937032 [TBL] [Abstract][Full Text] [Related]
18. Identification of residues involved in homodimer formation located within a β-strand region of the N-terminus of a Yeast G protein-coupled receptor. Uddin MS; Kim H; Deyo A; Naider F; Becker JM J Recept Signal Transduct Res; 2012 Apr; 32(2):65-75. PubMed ID: 22268895 [TBL] [Abstract][Full Text] [Related]
19. Cross-linking of a DOPA-containing peptide ligand into its G protein-coupled receptor. Umanah GK; Son C; Ding F; Naider F; Becker JM Biochemistry; 2009 Mar; 48(9):2033-44. PubMed ID: 19152328 [TBL] [Abstract][Full Text] [Related]
20. Structure and dynamics of the second and third transmembrane domains of human glycine receptor. Ma D; Liu Z; Li L; Tang P; Xu Y Biochemistry; 2005 Jun; 44(24):8790-800. PubMed ID: 15952785 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]