These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 19383470)

  • 1. Free energies of molecular bound states in lipid bilayers: lethal concentrations of antimicrobial peptides.
    Huang HW
    Biophys J; 2009 Apr; 96(8):3263-72. PubMed ID: 19383470
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Antimicrobial Peptide Simulations and the Influence of Force Field on the Free Energy for Pore Formation in Lipid Bilayers.
    Bennett WF; Hong CK; Wang Y; Tieleman DP
    J Chem Theory Comput; 2016 Sep; 12(9):4524-33. PubMed ID: 27529120
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Antimicrobial peptides in toroidal and cylindrical pores.
    Mihajlovic M; Lazaridis T
    Biochim Biophys Acta; 2010 Aug; 1798(8):1485-93. PubMed ID: 20403332
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evidence for membrane thinning effect as the mechanism for peptide-induced pore formation.
    Chen FY; Lee MT; Huang HW
    Biophys J; 2003 Jun; 84(6):3751-8. PubMed ID: 12770881
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Antimicrobial peptides bind more strongly to membrane pores.
    Mihajlovic M; Lazaridis T
    Biochim Biophys Acta; 2010 Aug; 1798(8):1494-502. PubMed ID: 20188066
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Melittin modifies bending elasticity in an unexpected way.
    Pott T; Gerbeaud C; Barbier N; Méléard P
    Chem Phys Lipids; 2015 Jan; 185():99-108. PubMed ID: 24875586
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The bound states of amphipathic drugs in lipid bilayers: study of curcumin.
    Sun Y; Lee CC; Hung WC; Chen FY; Lee MT; Huang HW
    Biophys J; 2008 Sep; 95(5):2318-24. PubMed ID: 18515370
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The importance of membrane defects-lessons from simulations.
    Bennett WF; Tieleman DP
    Acc Chem Res; 2014 Aug; 47(8):2244-51. PubMed ID: 24892900
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Energetics of pore formation induced by membrane active peptides.
    Lee MT; Chen FY; Huang HW
    Biochemistry; 2004 Mar; 43(12):3590-9. PubMed ID: 15035629
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Many-body effect of antimicrobial peptides: on the correlation between lipid's spontaneous curvature and pore formation.
    Lee MT; Hung WC; Chen FY; Huang HW
    Biophys J; 2005 Dec; 89(6):4006-16. PubMed ID: 16150963
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular mechanism of Peptide-induced pores in membranes.
    Huang HW; Chen FY; Lee MT
    Phys Rev Lett; 2004 May; 92(19):198304. PubMed ID: 15169456
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Solid-state nuclear magnetic resonance relaxation studies of the interaction mechanism of antimicrobial peptides with phospholipid bilayer membranes.
    Lu JX; Damodaran K; Blazyk J; Lorigan GA
    Biochemistry; 2005 Aug; 44(30):10208-17. PubMed ID: 16042398
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Indolicidin binding induces thinning of a lipid bilayer.
    Neale C; Hsu JC; Yip CM; Pomès R
    Biophys J; 2014 Apr; 106(8):L29-31. PubMed ID: 24739184
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differentiating antimicrobial peptides interacting with lipid bilayer: Molecular signatures derived from quartz crystal microbalance with dissipation monitoring.
    Wang KF; Nagarajan R; Camesano TA
    Biophys Chem; 2015 Jan; 196():53-67. PubMed ID: 25307196
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Membrane thinning effect of the beta-sheet antimicrobial protegrin.
    Heller WT; Waring AJ; Lehrer RI; Harroun TA; Weiss TM; Yang L; Huang HW
    Biochemistry; 2000 Jan; 39(1):139-45. PubMed ID: 10625488
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Peptide pores in lipid bilayers: voltage facilitation pleads for a revised model.
    Fadda GC; Lairez D; Guennouni Z; Koutsioubas A
    Phys Rev Lett; 2013 Jul; 111(2):028102. PubMed ID: 23889447
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Determining the mechanism of membrane permeabilizing peptides: identification of potent, equilibrium pore-formers.
    Krauson AJ; He J; Wimley WC
    Biochim Biophys Acta; 2012 Jul; 1818(7):1625-32. PubMed ID: 22365969
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antimicrobial action of the cationic peptide, chrysophsin-3: a coarse-grained molecular dynamics study.
    Catte A; Wilson MR; Walker M; Oganesyan VS
    Soft Matter; 2018 Apr; 14(15):2796-2807. PubMed ID: 29595197
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermodynamics of melittin binding to lipid bilayers. Aggregation and pore formation.
    Klocek G; Schulthess T; Shai Y; Seelig J
    Biochemistry; 2009 Mar; 48(12):2586-96. PubMed ID: 19173655
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of phosphatidylcholine bilayer thickness and molecular order on the binding of the antimicrobial peptide maculatin 1.1.
    Lee TH; Sani MA; Overall S; Separovic F; Aguilar MI
    Biochim Biophys Acta Biomembr; 2018 Feb; 1860(2):300-309. PubMed ID: 29030245
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.