BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 19383479)

  • 1. Histone octamer helical tubes suggest that an internucleosomal four-helix bundle stabilizes the chromatin fiber.
    Frouws TD; Patterton HG; Sewell BT
    Biophys J; 2009 Apr; 96(8):3363-71. PubMed ID: 19383479
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Structure of chromatin. I: Levels of DNA organization in the nucleus; nucleosome and chromatin fibres].
    Santisteban MS
    Pathol Biol (Paris); 1994 Nov; 42(9):868-83. PubMed ID: 7753597
    [TBL] [Abstract][Full Text] [Related]  

  • 3. EM measurements define the dimensions of the "30-nm" chromatin fiber: evidence for a compact, interdigitated structure.
    Robinson PJ; Fairall L; Huynh VA; Rhodes D
    Proc Natl Acad Sci U S A; 2006 Apr; 103(17):6506-11. PubMed ID: 16617109
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Histone chaperones and nucleosome assembly.
    Akey CW; Luger K
    Curr Opin Struct Biol; 2003 Feb; 13(1):6-14. PubMed ID: 12581654
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evidence for short-range helical order in the 30-nm chromatin fibers of erythrocyte nuclei.
    Scheffer MP; Eltsov M; Frangakis AS
    Proc Natl Acad Sci U S A; 2011 Oct; 108(41):16992-7. PubMed ID: 21969536
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural rearrangements of the histone octamer translocate DNA.
    Bilokapic S; Strauss M; Halic M
    Nat Commun; 2018 Apr; 9(1):1330. PubMed ID: 29626188
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of histone tails in chromatin folding revealed by a mesoscopic oligonucleosome model.
    Arya G; Schlick T
    Proc Natl Acad Sci U S A; 2006 Oct; 103(44):16236-41. PubMed ID: 17060627
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Asymmetries in the nucleosome core particle at 2.5 A resolution.
    Harp JM; Hanson BL; Timm DE; Bunick GJ
    Acta Crystallogr D Biol Crystallogr; 2000 Dec; 56(Pt 12):1513-34. PubMed ID: 11092917
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nucleosome arrays reveal the two-start organization of the chromatin fiber.
    Dorigo B; Schalch T; Kulangara A; Duda S; Schroeder RR; Richmond TJ
    Science; 2004 Nov; 306(5701):1571-3. PubMed ID: 15567867
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural insights into the ability of nucleoplasmin to assemble and chaperone histone octamers for DNA deposition.
    Franco A; Arranz R; Fernández-Rivero N; Velázquez-Campoy A; Martín-Benito J; Segura J; Prado A; Valpuesta JM; Muga A
    Sci Rep; 2019 Jul; 9(1):9487. PubMed ID: 31263230
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Changing chromatin fiber conformation by nucleosome repositioning.
    Müller O; Kepper N; Schöpflin R; Ettig R; Rippe K; Wedemann G
    Biophys J; 2014 Nov; 107(9):2141-50. PubMed ID: 25418099
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nucleosome gaping supports a functional structure for the 30nm chromatin fiber.
    Mozziconacci J; Victor JM
    J Struct Biol; 2003 Jul; 143(1):72-6. PubMed ID: 12892727
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The influence of the cylindrical shape of the nucleosomes and H1 defects on properties of chromatin.
    Diesinger PM; Heermann DW
    Biophys J; 2008 Jun; 94(11):4165-72. PubMed ID: 18234821
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure and dynamics of nucleosomal DNA.
    Muthurajan UM; Park YJ; Edayathumangalam RS; Suto RK; Chakravarthy S; Dyer PN; Luger K
    Biopolymers; 2003 Apr; 68(4):547-56. PubMed ID: 12666179
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Internal structure of the 30 nm chromatin fiber.
    Bartolomé S; Bermúdez A; Daban JR
    J Cell Sci; 1994 Nov; 107 ( Pt 11)():2983-92. PubMed ID: 7698998
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of nucleosome unwrapping within chromatin fibers using magnetic tweezers.
    Chien FT; van der Heijden T
    Biophys J; 2014 Jul; 107(2):373-383. PubMed ID: 25028879
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure of an H1-Bound 6-Nucleosome Array Reveals an Untwisted Two-Start Chromatin Fiber Conformation.
    Garcia-Saez I; Menoni H; Boopathi R; Shukla MS; Soueidan L; Noirclerc-Savoye M; Le Roy A; Skoufias DA; Bednar J; Hamiche A; Angelov D; Petosa C; Dimitrov S
    Mol Cell; 2018 Dec; 72(5):902-915.e7. PubMed ID: 30392928
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A statistical thermodynamic model applied to experimental AFM population and location data is able to quantify DNA-histone binding strength and internucleosomal interaction differences between acetylated and unacetylated nucleosomal arrays.
    Solis FJ; Bash R; Yodh J; Lindsay SM; Lohr D
    Biophys J; 2004 Nov; 87(5):3372-87. PubMed ID: 15347582
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural insights of nucleosome and the 30-nm chromatin fiber.
    Zhu P; Li G
    Curr Opin Struct Biol; 2016 Feb; 36():106-15. PubMed ID: 26872330
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Formation and stability of higher order chromatin structures. Contributions of the histone octamer.
    Schwarz PM; Hansen JC
    J Biol Chem; 1994 Jun; 269(23):16284-9. PubMed ID: 8206934
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.