BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

956 related articles for article (PubMed ID: 19383561)

  • 61. Functional silica nanoparticles synthesized by water-in-oil microemulsion processes.
    Aubert T; Grasset F; Mornet S; Duguet E; Cador O; Cordier S; Molard Y; Demange V; Mortier M; Haneda H
    J Colloid Interface Sci; 2010 Jan; 341(2):201-8. PubMed ID: 19875127
    [TBL] [Abstract][Full Text] [Related]  

  • 62. The effect of additives on the treatment of oil-in-water emulsions by vacuum evaporation.
    Gutiérrez G; Cambiella A; Benito JM; Pazos C; Coca J
    J Hazard Mater; 2007 Jun; 144(3):649-54. PubMed ID: 17321675
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Confinement of DNA in water-in-oil microemulsions.
    Swami A; Espinosa G; Guillot S; Raspaud E; Boué F; Langevin D
    Langmuir; 2008 Oct; 24(20):11828-33. PubMed ID: 18823088
    [TBL] [Abstract][Full Text] [Related]  

  • 64. A journey through the phase diagram of a pharmaceutically relevant microemulsion system.
    Chiappisi L; Noirez L; Gradzielski M
    J Colloid Interface Sci; 2016 Jul; 473():52-9. PubMed ID: 27054766
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Carbon dioxide/water, water/carbon dioxide emulsions and double emulsions stabilized with a nonionic biocompatible surfactant.
    Torino E; Reverchon E; Johnston KP
    J Colloid Interface Sci; 2010 Aug; 348(2):469-78. PubMed ID: 20537346
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Surfactant tail length-dependent lipase activity profile in cationic water-in-oil microemulsions.
    Dasgupta A; Das D; Mitra RN; Das PK
    J Colloid Interface Sci; 2005 Sep; 289(2):566-73. PubMed ID: 16112238
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Preparation and the influencing factors of cetirizine hydrochloride microemulsion.
    Sun Y; Jiang Y; An K
    Artif Cells Blood Substit Immobil Biotechnol; 2011 Jun; 39(3):174-6. PubMed ID: 20946090
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Development and characterization of self-microemulsifying drug delivery system of tacrolimus for intravenous administration.
    Borhade VB; Nair HA; Hegde DD
    Drug Dev Ind Pharm; 2009 May; 35(5):619-30. PubMed ID: 18979309
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Microemulsions for dermal drug delivery studied by dynamic light scattering: effect of interparticle interactions in oil-in-water microemulsions.
    Shukla A; Janich M; Jahn K; Neubert RH
    J Pharm Sci; 2003 Apr; 92(4):730-8. PubMed ID: 12661059
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Triacylglycerol microemulsions stabilized by alkyl ethoxylate surfactants--a basic study. Phase behavior, interfacial tension and microstructure.
    Engelskirchen S; Elsner N; Sottmann T; Strey R
    J Colloid Interface Sci; 2007 Aug; 312(1):114-21. PubMed ID: 17547932
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Interface composition of multiple emulsions: rheology as a probe.
    Michaut F; Perrin P; Hébraud P
    Langmuir; 2004 Sep; 20(20):8576-81. PubMed ID: 15379477
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Parameters with influence on the droplet size of w/o emulsions.
    Lindenstruth K; Müller BW
    Pharmazie; 2004 Mar; 59(3):187-90. PubMed ID: 15074589
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Effect of the spacer group of cationic gemini surfactant on microemulsion phase behavior.
    Chen L; Shang Y; Liu H; Hu Y
    J Colloid Interface Sci; 2006 Sep; 301(2):644-50. PubMed ID: 16820164
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Improved solubilization of Celecoxib in U-type nonionic microemulsions and their structural transitions with progressive aqueous dilution.
    Garti N; Avrahami M; Aserin A
    J Colloid Interface Sci; 2006 Jul; 299(1):352-65. PubMed ID: 16529763
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Physicochemical investigations of microemulsification of eucalyptus oil and water using mixed surfactants (AOT+Brij-35) and butanol.
    Mitra RK; Paul BK
    J Colloid Interface Sci; 2005 Mar; 283(2):565-77. PubMed ID: 15721934
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Dilution method study on the interfacial composition, thermodynamic properties and structural parameters of W/O microemulsions stabilized by 1-pentanol and surfactants in absence and presence of sodium chloride.
    Paul BK; Nandy D
    J Colloid Interface Sci; 2007 Dec; 316(2):751-61. PubMed ID: 17904572
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Behavior of asphaltene model compounds at w/o interfaces.
    Nordgård EL; Sørland G; Sjöblom J
    Langmuir; 2010 Feb; 26(4):2352-60. PubMed ID: 19852481
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Nonionic oil-in-water microemulsions: the effect of oil type on phase behaviour.
    Warisnoicharoen W; Lansley AB; Lawrence MJ
    Int J Pharm; 2000 Mar; 198(1):7-27. PubMed ID: 10722947
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Thermally induced gelling of oil-in-water emulsions comprising partially crystallized droplets: the impact of interfacial crystals.
    Thivilliers F; Laurichesse E; Saadaoui H; Leal-Calderon F; Schmitt V
    Langmuir; 2008 Dec; 24(23):13364-75. PubMed ID: 18956850
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Microcapsules with macroholes prepared by the competitive adsorption of surfactants on emulsion droplet surfaces.
    Kamio E; Yonemura S; Ono T; Yoshizawa H
    Langmuir; 2008 Dec; 24(23):13287-98. PubMed ID: 18666759
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 48.