These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 19383674)

  • 1. A permease encoded by STL1 is required for active glycerol uptake by Candida albicans.
    Kayingo G; Martins A; Andrie R; Neves L; Lucas C; Wong B
    Microbiology (Reading); 2009 May; 155(Pt 5):1547-1557. PubMed ID: 19383674
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A member of the sugar transporter family, Stl1p is the glycerol/H+ symporter in Saccharomyces cerevisiae.
    Ferreira C; van Voorst F; Martins A; Neves L; Oliveira R; Kielland-Brandt MC; Lucas C; Brandt A
    Mol Biol Cell; 2005 Apr; 16(4):2068-76. PubMed ID: 15703210
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The MAP kinase Hog1p differentially regulates stress-induced production and accumulation of glycerol and D-arabitol in Candida albicans.
    Kayingo G; Wong B
    Microbiology (Reading); 2005 Sep; 151(Pt 9):2987-2999. PubMed ID: 16151209
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional and expression studies of two novel STL1 genes of the osmotolerant and glycerol utilization yeast Candida glycerinogenes.
    Ji H; Lu X; Zong H; Zhuge B
    J Gen Appl Microbiol; 2018 Jul; 64(3):121-126. PubMed ID: 29607876
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stl1 transporter mediating the uptake of glycerol is not a weak point of Saccharomyces kudriavzevii's low osmotolerance.
    Zemančíková J; Papoušková K; Peréz-Torrado R; Querol A; Sychrová H
    Lett Appl Microbiol; 2019 Jan; 68(1):81-86. PubMed ID: 30382581
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A family of oligopeptide transporters is required for growth of Candida albicans on proteins.
    Reuss O; Morschhäuser J
    Mol Microbiol; 2006 May; 60(3):795-812. PubMed ID: 16629678
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Expression studies of GUP1 and GUP2, genes involved in glycerol active transport in Saccharomyces cerevisiae, using semi-quantitative RT-PCR.
    Oliveira R; Lucas C
    Curr Genet; 2004 Sep; 46(3):140-6. PubMed ID: 15278288
    [TBL] [Abstract][Full Text] [Related]  

  • 8. D-arabitol metabolism in Candida albicans: construction and analysis of mutants lacking D-arabitol dehydrogenase.
    Wong B; Leeson S; Grindle S; Magee B; Brooks E; Magee PT
    J Bacteriol; 1995 Jun; 177(11):2971-6. PubMed ID: 7768790
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transport properties of a C. albicans amino-acid permease whose putative gene was cloned and expressed in S. cerevisiae.
    Sychrová H; Chevallier MR
    Curr Genet; 1993 Dec; 24(6):487-90. PubMed ID: 8299168
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Three Candida albicans potassium uptake systems differ in their ability to provide Saccharomyces cerevisiae trk1trk2 mutants with necessary potassium.
    Elicharová H; Hušeková B; Sychrová H
    FEMS Yeast Res; 2016 Jun; 16(4):. PubMed ID: 27189364
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Robust utilization of phospholipase-generated metabolites, glycerophosphodiesters, by Candida albicans: role of the CaGit1 permease.
    Bishop AC; Sun T; Johnson ME; Bruno VM; Patton-Vogt J
    Eukaryot Cell; 2011 Dec; 10(12):1618-27. PubMed ID: 21984707
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glucose repression over Saccharomyces cerevisiae glycerol/H+ symporter gene STL1 is overcome by high temperature.
    Ferreira C; Lucas C
    FEBS Lett; 2007 May; 581(9):1923-7. PubMed ID: 17434487
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reductive iron uptake by Candida albicans: role of copper, iron and the TUP1 regulator.
    Knight SAB; Lesuisse E; Stearman R; Klausner RD; Dancis A
    Microbiology (Reading); 2002 Jan; 148(Pt 1):29-40. PubMed ID: 11782496
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulated overexpression of CDR1 in Candida albicans confers multidrug resistance.
    Niimi M; Niimi K; Takano Y; Holmes AR; Fischer FJ; Uehara Y; Cannon RD
    J Antimicrob Chemother; 2004 Dec; 54(6):999-1006. PubMed ID: 15486081
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The disruption of JEN1 from Candida albicans impairs the transport of lactate.
    Soares-Silva I; Paiva S; Kötter P; Entian KD; Casal M
    Mol Membr Biol; 2004; 21(6):403-11. PubMed ID: 15764370
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fluconazole transport into Candida albicans secretory vesicles by the membrane proteins Cdr1p, Cdr2p, and Mdr1p.
    Basso LR; Gast CE; Mao Y; Wong B
    Eukaryot Cell; 2010 Jun; 9(6):960-70. PubMed ID: 20348384
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ABC transporter Cdr1p contributes more than Cdr2p does to fluconazole efflux in fluconazole-resistant Candida albicans clinical isolates.
    Holmes AR; Lin YH; Niimi K; Lamping E; Keniya M; Niimi M; Tanabe K; Monk BC; Cannon RD
    Antimicrob Agents Chemother; 2008 Nov; 52(11):3851-62. PubMed ID: 18710914
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional characterization of the ferroxidase, permease high-affinity iron transport complex from Candida albicans.
    Ziegler L; Terzulli A; Gaur R; McCarthy R; Kosman DJ
    Mol Microbiol; 2011 Jul; 81(2):473-85. PubMed ID: 21645130
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The siderophore iron transporter of Candida albicans (Sit1p/Arn1p) mediates uptake of ferrichrome-type siderophores and is required for epithelial invasion.
    Heymann P; Gerads M; Schaller M; Dromer F; Winkelmann G; Ernst JF
    Infect Immun; 2002 Sep; 70(9):5246-55. PubMed ID: 12183576
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Regulation of cell growth and filamentation in Candida albicans by high-affinity iron permeases Ftr1 and Ftr2].
    Du H; Zhu L
    Wei Sheng Wu Xue Bao; 2015 May; 55(5):579-86. PubMed ID: 26259482
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.