These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 193838)

  • 41. Deconstruction of the catalytic array within the amidotransferase subunit of carbamoyl phosphate synthetase.
    Huang X; Raushel FM
    Biochemistry; 1999 Nov; 38(48):15909-14. PubMed ID: 10625457
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Synthesis and inactivation of carbamyl phosphate synthetase isozymes of Bacillus subtilis during growth and sporulation.
    Paulus TJ; Switzer RL
    J Bacteriol; 1979 Dec; 140(3):769-73. PubMed ID: 230177
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Synthesis of dinucleoside polyphosphates catalyzed by firefly luciferase.
    Sillero MA; Guranowski A; Sillero A
    Eur J Biochem; 1991 Dec; 202(2):507-13. PubMed ID: 1761051
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Asymmetric binding of the inhibitor di(adenosine-5') pentaphosphate (Ap5A) to adenylate kinase.
    Nageswara Rao BD; Cohn M
    Proc Natl Acad Sci U S A; 1977 Dec; 74(12):5355-7. PubMed ID: 202953
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Location of the ATP gamma-phosphate-binding sites on rat liver carbamoyl-phosphate synthetase I. Studies with the ATP analog 5'-p-fluorosulfonylbenzoyladenosine.
    Potter MD; Powers-Lee SG
    J Biol Chem; 1992 Jan; 267(3):2023-31. PubMed ID: 1730733
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Conversion of UMP, an allosteric inhibitor of carbamyl phosphate synthetase, to an activator by modification of the UMP ribose moiety.
    Boettcher B; Meister A
    J Biol Chem; 1981 Jun; 256(12):5977-80. PubMed ID: 7240186
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Regulation of Escherichia coli carbamyl phosphate synthetase. Evidence for overlap of the allosteric nucleotide binding sites.
    Boettcher B; Meister A
    J Biol Chem; 1982 Dec; 257(23):13971-6. PubMed ID: 6754720
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Direct demonstration of carbamoyl phosphate formation on the C-terminal domain of carbamoyl phosphate synthetase.
    Kothe M; Purcarea C; Guy HI; Evans DR; Powers-Lee SG
    Protein Sci; 2005 Jan; 14(1):37-44. PubMed ID: 15576558
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A stringent test for the nucleotide switch mechanism of carbamoyl phosphate synthetase.
    Raushel FM; Mullins LS; Gibson GE
    Biochemistry; 1998 Jul; 37(28):10272-8. PubMed ID: 9665735
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The substrate specificity of dynein from Tetrahymena cilia.
    Shimizu T
    J Biochem; 1987 Nov; 102(5):1159-65. PubMed ID: 2830251
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Adenine nucleotides as allosteric effectors of pea seed glutamine synthetase.
    Knight TJ; Langston-Unkefer PJ
    J Biol Chem; 1988 Aug; 263(23):11084-9. PubMed ID: 2900240
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Identification of critical amino acid residues of Saccharomyces cerevisiae carbamoyl-phosphate synthetase: definition of the ATP site involved in carboxy-phosphate formation.
    Zheng W; Lim AL; Powers-Lee SG
    Biochim Biophys Acta; 1997 Aug; 1341(1):35-48. PubMed ID: 9300807
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Measurement of mitochondrial oxidative phosphorylation: selective inhibition of adenylate kinase activity by P1,P5-di-(adenosine-5')-pentaphosphate.
    Melnick RL; Rubenstein CP; Motzkin SM
    Anal Biochem; 1979 Jul; 96(1):7-11. PubMed ID: 227290
    [No Abstract]   [Full Text] [Related]  

  • 54. Adenosine di-, tri- and tetraphosphopyridoxals modify the same lysyl residue at the ATP-binding site in adenylate kinase.
    Yagami T; Tagaya M; Fukui T
    FEBS Lett; 1988 Mar; 229(2):261-4. PubMed ID: 2831094
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Phosphorylation and dephosphorylation of carbamoyl-phosphate synthetase II complex of rat ascites hepatoma cells.
    Otsuki T; Mori M; Tatibana M
    J Biochem; 1981 May; 89(5):1367-74. PubMed ID: 6115855
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The catalytic mechanism of the amidotransferase domain of the Syrian hamster multifunctional protein CAD. Evidence for a CAD-glutamyl covalent intermediate in the formation of carbamyl phosphate.
    Chaparian MG; Evans DR
    J Biol Chem; 1991 Feb; 266(6):3387-95. PubMed ID: 1671673
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Myokinase and contractile function of glycerinated muscle fibers.
    Savabi F; Geiger PJ; Bessman SP
    Biochem Med Metab Biol; 1986 Apr; 35(2):227-38. PubMed ID: 3011038
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Effects of analogues of adenine nucleotides on increases in intracellular calcium mediated by P2T-purinoceptors on human blood platelets.
    Hall DA; Hourani SM
    Br J Pharmacol; 1993 Mar; 108(3):728-33. PubMed ID: 8467360
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Regulation of an Escherichia coli/mammalian chimeric carbamoyl-phosphate synthetase.
    Sahay N; Guy HI; Liu X; Evans DR
    J Biol Chem; 1998 Nov; 273(47):31195-202. PubMed ID: 9813025
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Structure of the complex of yeast adenylate kinase with the inhibitor P1,P5-di(adenosine-5'-)pentaphosphate at 2.6 A resolution.
    Egner U; Tomasselli AG; Schulz GE
    J Mol Biol; 1987 Jun; 195(3):649-58. PubMed ID: 2821281
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.