These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 19383813)
1. Combining simvastatin with the farnesyltransferase inhibitor tipifarnib results in an enhanced cytotoxic effect in a subset of primary CD34+ acute myeloid leukemia samples. van der Weide K; de Jonge-Peeters SD; Kuipers F; de Vries EG; Vellenga E Clin Cancer Res; 2009 May; 15(9):3076-83. PubMed ID: 19383813 [TBL] [Abstract][Full Text] [Related]
2. Targeting of CD34+CD38- cells using Gemtuzumab ozogamicin (Mylotarg) in combination with tipifarnib (Zarnestra) in Acute Myeloid Leukaemia. Jawad M; Yu N; Seedhouse C; Tandon K; Russell NH; Pallis M BMC Cancer; 2012 Sep; 12():431. PubMed ID: 23013471 [TBL] [Abstract][Full Text] [Related]
3. Variability in responsiveness to lovastatin of the primitive CD34+ AML subfraction compared to normal CD34+ cells. de Jonge-Peeters SD; van der Weide K; Kuipers F; Sluiter WJ; de Vries EG; Vellenga E Ann Hematol; 2009 Jun; 88(6):573-80. PubMed ID: 19002460 [TBL] [Abstract][Full Text] [Related]
4. Curcumin reduces expression of Bcl-2, leading to apoptosis in daunorubicin-insensitive CD34+ acute myeloid leukemia cell lines and primary sorted CD34+ acute myeloid leukemia cells. Rao J; Xu DR; Zheng FM; Long ZJ; Huang SS; Wu X; Zhou WH; Huang RW; Liu Q J Transl Med; 2011 May; 9():71. PubMed ID: 21595920 [TBL] [Abstract][Full Text] [Related]
5. Human stem cell factor-antibody [anti-SCF] enhances chemotherapy cytotoxicity in human CD34+ resistant myeloid leukaemia cells. Lu C; Hassan HT Leuk Res; 2006 Mar; 30(3):296-302. PubMed ID: 16112192 [TBL] [Abstract][Full Text] [Related]
6. Erucylphosphohomocholine, the first intravenously applicable alkylphosphocholine, is cytotoxic to acute myelogenous leukemia cells through JNK- and PP2A-dependent mechanisms. Martelli AM; Papa V; Tazzari PL; Ricci F; Evangelisti C; Chiarini F; Grimaldi C; Cappellini A; Martinelli G; Ottaviani E; Pagliaro P; Horn S; Bäsecke J; Lindner LH; Eibl H; McCubrey JA Leukemia; 2010 Apr; 24(4):687-98. PubMed ID: 20200557 [TBL] [Abstract][Full Text] [Related]
7. Farnesyltransferase inhibition in hematologic malignancies: the clinical experience with tipifarnib. Martinelli G; Iacobucci I; Paolini S; Ottaviani E Clin Adv Hematol Oncol; 2008 Apr; 6(4):303-10. PubMed ID: 18496498 [TBL] [Abstract][Full Text] [Related]
8. Identification of molecular predictors of response in a study of tipifarnib treatment in relapsed and refractory acute myelogenous leukemia. Raponi M; Harousseau JL; Lancet JE; Löwenberg B; Stone R; Zhang Y; Rackoff W; Wang Y; Atkins D Clin Cancer Res; 2007 Apr; 13(7):2254-60. PubMed ID: 17404110 [TBL] [Abstract][Full Text] [Related]
13. Targeting GLI1 Suppresses Cell Growth and Enhances Chemosensitivity in CD34+ Enriched Acute Myeloid Leukemia Progenitor Cells. Long B; Wang LX; Zheng FM; Lai SP; Xu DR; Hu Y; Lin DJ; Zhang XZ; Dong L; Long ZJ; Tong XZ; Liu Q Cell Physiol Biochem; 2016; 38(4):1288-302. PubMed ID: 27008269 [TBL] [Abstract][Full Text] [Related]
14. IL-1β inhibits self-renewal capacity of dormant CD34⁺/CD38⁻ acute myelogenous leukemia cells in vitro and in vivo. Yang J; Ikezoe T; Nishioka C; Nobumoto A; Yokoyama A Int J Cancer; 2013 Oct; 133(8):1967-81. PubMed ID: 23564444 [TBL] [Abstract][Full Text] [Related]
15. CD34⁺/CD38⁻ acute myelogenous leukemia cells aberrantly express CD82 which regulates adhesion and survival of leukemia stem cells. Nishioka C; Ikezoe T; Furihata M; Yang J; Serada S; Naka T; Nobumoto A; Kataoka S; Tsuda M; Udaka K; Yokoyama A Int J Cancer; 2013 May; 132(9):2006-19. PubMed ID: 23055153 [TBL] [Abstract][Full Text] [Related]
16. A 2-gene classifier for predicting response to the farnesyltransferase inhibitor tipifarnib in acute myeloid leukemia. Raponi M; Lancet JE; Fan H; Dossey L; Lee G; Gojo I; Feldman EJ; Gotlib J; Morris LE; Greenberg PL; Wright JJ; Harousseau JL; Löwenberg B; Stone RM; De Porre P; Wang Y; Karp JE Blood; 2008 Mar; 111(5):2589-96. PubMed ID: 18160667 [TBL] [Abstract][Full Text] [Related]
17. The effect of the proteasome inhibitor bortezomib on acute myeloid leukemia cells and drug resistance associated with the CD34+ immature phenotype. Colado E; Alvarez-Fernández S; Maiso P; Martín-Sánchez J; Vidriales MB; Garayoa M; Ocio EM; Montero JC; Pandiella A; San Miguel JF Haematologica; 2008 Jan; 93(1):57-66. PubMed ID: 18166786 [TBL] [Abstract][Full Text] [Related]
18. Four different regimens of farnesyltransferase inhibitor tipifarnib in older, untreated acute myeloid leukemia patients: North American Intergroup Phase II study SWOG S0432. Erba HP; Othus M; Walter RB; Kirschbaum MH; Tallman MS; Larson RA; Slovak ML; Kopecky KJ; Gundacker HM; Appelbaum FR Leuk Res; 2014 Mar; 38(3):329-33. PubMed ID: 24411921 [TBL] [Abstract][Full Text] [Related]
19. Osteopontin plays a unique role in resistance of CD34+/CD123+ human leukemia cell lines KG1a to parthenolide. Mohammadi S; Zahedpanah M; Ghaffari SH; Shaiegan M; Nikbakht M; Nikugoftar M Life Sci; 2017 Nov; 189():89-95. PubMed ID: 28935249 [TBL] [Abstract][Full Text] [Related]
20. Senescence effects of Angelica sinensis polysaccharides on human acute myelogenous leukemia stem and progenitor cells. Liu J; Xu CY; Cai SZ; Zhou Y; Li J; Jiang R; Wang YP Asian Pac J Cancer Prev; 2014 Jan; 14(11):6549-56. PubMed ID: 24377566 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]