BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 19383813)

  • 1. Combining simvastatin with the farnesyltransferase inhibitor tipifarnib results in an enhanced cytotoxic effect in a subset of primary CD34+ acute myeloid leukemia samples.
    van der Weide K; de Jonge-Peeters SD; Kuipers F; de Vries EG; Vellenga E
    Clin Cancer Res; 2009 May; 15(9):3076-83. PubMed ID: 19383813
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Targeting of CD34+CD38- cells using Gemtuzumab ozogamicin (Mylotarg) in combination with tipifarnib (Zarnestra) in Acute Myeloid Leukaemia.
    Jawad M; Yu N; Seedhouse C; Tandon K; Russell NH; Pallis M
    BMC Cancer; 2012 Sep; 12():431. PubMed ID: 23013471
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Variability in responsiveness to lovastatin of the primitive CD34+ AML subfraction compared to normal CD34+ cells.
    de Jonge-Peeters SD; van der Weide K; Kuipers F; Sluiter WJ; de Vries EG; Vellenga E
    Ann Hematol; 2009 Jun; 88(6):573-80. PubMed ID: 19002460
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Curcumin reduces expression of Bcl-2, leading to apoptosis in daunorubicin-insensitive CD34+ acute myeloid leukemia cell lines and primary sorted CD34+ acute myeloid leukemia cells.
    Rao J; Xu DR; Zheng FM; Long ZJ; Huang SS; Wu X; Zhou WH; Huang RW; Liu Q
    J Transl Med; 2011 May; 9():71. PubMed ID: 21595920
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Human stem cell factor-antibody [anti-SCF] enhances chemotherapy cytotoxicity in human CD34+ resistant myeloid leukaemia cells.
    Lu C; Hassan HT
    Leuk Res; 2006 Mar; 30(3):296-302. PubMed ID: 16112192
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Erucylphosphohomocholine, the first intravenously applicable alkylphosphocholine, is cytotoxic to acute myelogenous leukemia cells through JNK- and PP2A-dependent mechanisms.
    Martelli AM; Papa V; Tazzari PL; Ricci F; Evangelisti C; Chiarini F; Grimaldi C; Cappellini A; Martinelli G; Ottaviani E; Pagliaro P; Horn S; Bäsecke J; Lindner LH; Eibl H; McCubrey JA
    Leukemia; 2010 Apr; 24(4):687-98. PubMed ID: 20200557
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Farnesyltransferase inhibition in hematologic malignancies: the clinical experience with tipifarnib.
    Martinelli G; Iacobucci I; Paolini S; Ottaviani E
    Clin Adv Hematol Oncol; 2008 Apr; 6(4):303-10. PubMed ID: 18496498
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of molecular predictors of response in a study of tipifarnib treatment in relapsed and refractory acute myelogenous leukemia.
    Raponi M; Harousseau JL; Lancet JE; Löwenberg B; Stone R; Zhang Y; Rackoff W; Wang Y; Atkins D
    Clin Cancer Res; 2007 Apr; 13(7):2254-60. PubMed ID: 17404110
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tipifarnib in acute myeloid leukemia.
    Burnett AK; Kell J
    Drugs Today (Barc); 2007 Nov; 43(11):795-800. PubMed ID: 18174965
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tipifarnib-induced apoptosis in acute myeloid leukemia and multiple myeloma cells depends on Ca2+ influx through plasma membrane Ca2+ channels.
    Yanamandra N; Buzzeo RW; Gabriel M; Hazlehurst LA; Mari Y; Beaupre DM; Cuevas J
    J Pharmacol Exp Ther; 2011 Jun; 337(3):636-43. PubMed ID: 21378206
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The farnesyl transferase inhibitor, tipifarnib, is a potent inhibitor of the MDR1 gene product, P-glycoprotein, and demonstrates significant cytotoxic synergism against human leukemia cell lines.
    Medeiros BC; Landau HJ; Morrow M; Lockerbie RO; Pitts T; Eckhardt SG
    Leukemia; 2007 Apr; 21(4):739-46. PubMed ID: 17268526
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Farnesyltransferase inhibitor tipifarnib inhibits Rheb prenylation and stabilizes Bax in acute myelogenous leukemia cells.
    Ding H; McDonald JS; Yun S; Schneider PA; Peterson KL; Flatten KS; Loegering DA; Oberg AL; Riska SM; Huang S; Sinicrope FA; Adjei AA; Karp JE; Meng XW; Kaufmann SH
    Haematologica; 2014 Jan; 99(1):60-9. PubMed ID: 23996484
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Targeting GLI1 Suppresses Cell Growth and Enhances Chemosensitivity in CD34+ Enriched Acute Myeloid Leukemia Progenitor Cells.
    Long B; Wang LX; Zheng FM; Lai SP; Xu DR; Hu Y; Lin DJ; Zhang XZ; Dong L; Long ZJ; Tong XZ; Liu Q
    Cell Physiol Biochem; 2016; 38(4):1288-302. PubMed ID: 27008269
    [TBL] [Abstract][Full Text] [Related]  

  • 14. IL-1β inhibits self-renewal capacity of dormant CD34⁺/CD38⁻ acute myelogenous leukemia cells in vitro and in vivo.
    Yang J; Ikezoe T; Nishioka C; Nobumoto A; Yokoyama A
    Int J Cancer; 2013 Oct; 133(8):1967-81. PubMed ID: 23564444
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CD34⁺/CD38⁻ acute myelogenous leukemia cells aberrantly express CD82 which regulates adhesion and survival of leukemia stem cells.
    Nishioka C; Ikezoe T; Furihata M; Yang J; Serada S; Naka T; Nobumoto A; Kataoka S; Tsuda M; Udaka K; Yokoyama A
    Int J Cancer; 2013 May; 132(9):2006-19. PubMed ID: 23055153
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A 2-gene classifier for predicting response to the farnesyltransferase inhibitor tipifarnib in acute myeloid leukemia.
    Raponi M; Lancet JE; Fan H; Dossey L; Lee G; Gojo I; Feldman EJ; Gotlib J; Morris LE; Greenberg PL; Wright JJ; Harousseau JL; Löwenberg B; Stone RM; De Porre P; Wang Y; Karp JE
    Blood; 2008 Mar; 111(5):2589-96. PubMed ID: 18160667
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of the proteasome inhibitor bortezomib on acute myeloid leukemia cells and drug resistance associated with the CD34+ immature phenotype.
    Colado E; Alvarez-Fernández S; Maiso P; Martín-Sánchez J; Vidriales MB; Garayoa M; Ocio EM; Montero JC; Pandiella A; San Miguel JF
    Haematologica; 2008 Jan; 93(1):57-66. PubMed ID: 18166786
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Four different regimens of farnesyltransferase inhibitor tipifarnib in older, untreated acute myeloid leukemia patients: North American Intergroup Phase II study SWOG S0432.
    Erba HP; Othus M; Walter RB; Kirschbaum MH; Tallman MS; Larson RA; Slovak ML; Kopecky KJ; Gundacker HM; Appelbaum FR
    Leuk Res; 2014 Mar; 38(3):329-33. PubMed ID: 24411921
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Osteopontin plays a unique role in resistance of CD34+/CD123+ human leukemia cell lines KG1a to parthenolide.
    Mohammadi S; Zahedpanah M; Ghaffari SH; Shaiegan M; Nikbakht M; Nikugoftar M
    Life Sci; 2017 Nov; 189():89-95. PubMed ID: 28935249
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Senescence effects of Angelica sinensis polysaccharides on human acute myelogenous leukemia stem and progenitor cells.
    Liu J; Xu CY; Cai SZ; Zhou Y; Li J; Jiang R; Wang YP
    Asian Pac J Cancer Prev; 2014 Jan; 14(11):6549-56. PubMed ID: 24377566
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.