BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 19383813)

  • 21. Treatment with high-dose simvastatin inhibits geranylgeranylation in AML blast cells in a subset of AML patients.
    van der Weide K; de Jonge-Peeters S; Huls G; Fehrmann RS; Schuringa JJ; Kuipers F; de Vries EG; Vellenga E
    Exp Hematol; 2012 Mar; 40(3):177-186.e6. PubMed ID: 22120639
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of simvastatin alone and in combination with cytosine arabinoside on the proliferation of myeloid leukemia cell lines.
    Lishner M; Bar-Sef A; Elis A; Fabian I
    J Investig Med; 2001 Jul; 49(4):319-24. PubMed ID: 11478407
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Proapoptotic activity and chemosensitizing effect of the novel Akt inhibitor perifosine in acute myelogenous leukemia cells.
    Papa V; Tazzari PL; Chiarini F; Cappellini A; Ricci F; Billi AM; Evangelisti C; Ottaviani E; Martinelli G; Testoni N; McCubrey JA; Martelli AM
    Leukemia; 2008 Jan; 22(1):147-60. PubMed ID: 17928881
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Suppression of farnesyltransferase activity in acute myeloid leukemia and myelodysplastic syndrome: current understanding and recommended use of tipifarnib.
    Epling-Burnette PK; Loughran TP
    Expert Opin Investig Drugs; 2010 May; 19(5):689-98. PubMed ID: 20402600
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Combination of tipifarnib and rapamycin synergistically inhibits the growth of leukemia cells and overcomes resistance to tipifarnib via alteration of cellular signaling pathways.
    Nagai T; Ohmine K; Fujiwara S; Uesawa M; Sakurai C; Ozawa K
    Leuk Res; 2010 Aug; 34(8):1057-63. PubMed ID: 20071026
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Tipifarnib and bortezomib are synergistic and overcome cell adhesion-mediated drug resistance in multiple myeloma and acute myeloid leukemia.
    Yanamandra N; Colaco NM; Parquet NA; Buzzeo RW; Boulware D; Wright G; Perez LE; Dalton WS; Beaupre DM
    Clin Cancer Res; 2006 Jan; 12(2):591-9. PubMed ID: 16428505
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Phase II trial of tipifarnib as maintenance therapy in first complete remission in adults with acute myelogenous leukemia and poor-risk features.
    Karp JE; Smith BD; Gojo I; Lancet JE; Greer J; Klein M; Morris L; Levis MJ; Gore SD; Wright JJ; Garrett-Mayer E
    Clin Cancer Res; 2008 May; 14(10):3077-82. PubMed ID: 18483374
    [TBL] [Abstract][Full Text] [Related]  

  • 28. In vitro profiling of the sensitivity of pediatric leukemia cells to tipifarnib: identification of T-cell ALL and FAB M5 AML as the most sensitive subsets.
    Goemans BF; Zwaan CM; Harlow A; Loonen AH; Gibson BE; Hählen K; Reinhardt D; Creutzig U; Heinrich MC; Kaspers GJ
    Blood; 2005 Nov; 106(10):3532-7. PubMed ID: 16051737
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Superior activity of the combination of histone deacetylase inhibitor LAQ824 and the FLT-3 kinase inhibitor PKC412 against human acute myelogenous leukemia cells with mutant FLT-3.
    Bali P; George P; Cohen P; Tao J; Guo F; Sigua C; Vishvanath A; Scuto A; Annavarapu S; Fiskus W; Moscinski L; Atadja P; Bhalla K
    Clin Cancer Res; 2004 Aug; 10(15):4991-7. PubMed ID: 15297399
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Simvastatin interacts synergistically with tipifarnib to induce apoptosis in leukemia cells through the disruption of RAS membrane localization and ERK pathway inhibition.
    Ahmed TA; Hayslip J; Leggas M
    Leuk Res; 2014 Nov; 38(11):1350-7. PubMed ID: 25262449
    [TBL] [Abstract][Full Text] [Related]  

  • 31. CD34⁺/CD38⁻ acute myelogenous leukemia cells aberrantly express Aurora kinase A.
    Yang J; Ikezoe T; Nishioka C; Nobumoto A; Udaka K; Yokoyama A
    Int J Cancer; 2013 Dec; 133(11):2706-19. PubMed ID: 23686525
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The addition of the farnesyl transferase inhibitor, tipifarnib, to low dose cytarabine does not improve outcome for older patients with AML.
    Burnett AK; Russell NH; Culligan D; Cavanagh J; Kell J; Wheatley K; Virchis A; Hills RK; Milligan D;
    Br J Haematol; 2012 Aug; 158(4):519-22. PubMed ID: 22639959
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Active oral regimen for elderly adults with newly diagnosed acute myelogenous leukemia: a preclinical and phase 1 trial of the farnesyltransferase inhibitor tipifarnib (R115777, Zarnestra) combined with etoposide.
    Karp JE; Flatten K; Feldman EJ; Greer JM; Loegering DA; Ricklis RM; Morris LE; Ritchie E; Smith BD; Ironside V; Talbott T; Roboz G; Le SB; Meng XW; Schneider PA; Dai NT; Adjei AA; Gore SD; Levis MJ; Wright JJ; Garrett-Mayer E; Kaufmann SH
    Blood; 2009 May; 113(20):4841-52. PubMed ID: 19109557
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Apoptosis and proliferation differences between CD34+ and CD34- leukemic subpopulations in childhood acute leukemia.
    Shman TV; Savitski VP; Fedasenka UU; Aleinikova OV
    Hematology; 2007 Oct; 12(5):403-7. PubMed ID: 17852445
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Farnesyltransferase inhibitors and their potential role in therapy for myelodysplastic syndromes and acute myeloid leukaemia.
    Braun T; Fenaux P
    Br J Haematol; 2008 May; 141(5):576-86. PubMed ID: 18410457
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Gene expression profiling in the leukemic stem cell-enriched CD34+ fraction identifies target genes that predict prognosis in normal karyotype AML.
    de Jonge HJ; Woolthuis CM; Vos AZ; Mulder A; van den Berg E; Kluin PM; van der Weide K; de Bont ES; Huls G; Vellenga E; Schuringa JJ
    Leukemia; 2011 Dec; 25(12):1825-33. PubMed ID: 21760593
    [TBL] [Abstract][Full Text] [Related]  

  • 37. JmjC-domain containing histone demethylase 1B-mediated p15(Ink4b) suppression promotes the proliferation of leukemic progenitor cells through modulation of cell cycle progression in acute myeloid leukemia.
    Nakamura S; Tan L; Nagata Y; Takemura T; Asahina A; Yokota D; Yagyu T; Shibata K; Fujisawa S; Ohnishi K
    Mol Carcinog; 2013 Jan; 52(1):57-69. PubMed ID: 22086844
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Potential CD34 signaling through phosphorylated-BAD in chemotherapy-resistant acute myeloid leukemia.
    Yiau SK; Lee C; Mohd Tohit ER; Chang KM; Abdullah M
    J Recept Signal Transduct Res; 2019 Jun; 39(3):276-282. PubMed ID: 31509041
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Bortezomib sensitivity of acute myeloid leukemia CD34(+) cells can be enhanced by targeting the persisting activity of NF-κB and the accumulation of MCL-1.
    Bosman MC; Schuringa JJ; Quax WJ; Vellenga E
    Exp Hematol; 2013 Jun; 41(6):530-538.e1. PubMed ID: 23416210
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Dual inhibition of PI3K and mTORC1/2 signaling by NVP-BEZ235 as a new therapeutic strategy for acute myeloid leukemia.
    Chapuis N; Tamburini J; Green AS; Vignon C; Bardet V; Neyret A; Pannetier M; Willems L; Park S; Macone A; Maira SM; Ifrah N; Dreyfus F; Herault O; Lacombe C; Mayeux P; Bouscary D
    Clin Cancer Res; 2010 Nov; 16(22):5424-35. PubMed ID: 20884625
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.