These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
721 related articles for article (PubMed ID: 19384447)
21. Catalysis by gold dispersed on supports: the importance of cationic gold. Fierro-Gonzalez JC; Gates BC Chem Soc Rev; 2008 Sep; 37(9):2127-34. PubMed ID: 18762849 [TBL] [Abstract][Full Text] [Related]
22. Electronic effects of linker substitution on Lewis acid catalysis with metal-organic frameworks. Vermoortele F; Vandichel M; Van de Voorde B; Ameloot R; Waroquier M; Van Speybroeck V; De Vos DE Angew Chem Int Ed Engl; 2012 May; 51(20):4887-90. PubMed ID: 22488675 [TBL] [Abstract][Full Text] [Related]
23. A catalytically active, permanently microporous MOF with metalloporphyrin struts. Shultz AM; Farha OK; Hupp JT; Nguyen ST J Am Chem Soc; 2009 Apr; 131(12):4204-5. PubMed ID: 19271705 [TBL] [Abstract][Full Text] [Related]
24. Metal-organic framework structures--how closely are they related to classical inorganic structures? Natarajan S; Mahata P Chem Soc Rev; 2009 Aug; 38(8):2304-18. PubMed ID: 19623352 [TBL] [Abstract][Full Text] [Related]
25. Stability and reactivity of grafted Cr(CO)3 species on MOF linkers: a computational study. Vitillo JG; Groppo E; Bordiga S; Chavan S; Ricchiardi G; Zecchina A Inorg Chem; 2009 Jun; 48(12):5439-48. PubMed ID: 19499958 [TBL] [Abstract][Full Text] [Related]
26. Gaseous species as reaction tracers in the solvothermal synthesis of the zinc oxide terephthalate MOF-5. Hausdorf S; Baitalow F; Seidel J; Mertens FO J Phys Chem A; 2007 May; 111(20):4259-66. PubMed ID: 17455926 [TBL] [Abstract][Full Text] [Related]
27. Sustainable green catalysis by supported metal nanoparticles. Fukuoka A; Dhepe PL Chem Rec; 2009; 9(4):224-35. PubMed ID: 19701957 [TBL] [Abstract][Full Text] [Related]
28. Interconversion between molecular polyhedra and metal-organic frameworks. Li JR; Timmons DJ; Zhou HC J Am Chem Soc; 2009 May; 131(18):6368-9. PubMed ID: 19374418 [TBL] [Abstract][Full Text] [Related]
29. Old materials with new tricks: multifunctional open-framework materials. Maspoch D; Ruiz-Molina D; Veciana J Chem Soc Rev; 2007 May; 36(5):770-818. PubMed ID: 17471401 [TBL] [Abstract][Full Text] [Related]
30. Bridging the materials gap in catalysis: entrapment of molecular catalysts in functional supports and beyond. Thomas A; Driess M Angew Chem Int Ed Engl; 2009; 48(11):1890-2. PubMed ID: 19156652 [TBL] [Abstract][Full Text] [Related]
31. Size-selective Lewis acid catalysis in a microporous metal-organic framework with exposed Mn2+ coordination sites. Horike S; Dinca M; Tamaki K; Long JR J Am Chem Soc; 2008 May; 130(18):5854-5. PubMed ID: 18399629 [TBL] [Abstract][Full Text] [Related]
32. Oxide ultra-thin films on metals: new materials for the design of supported metal catalysts. Freund HJ; Pacchioni G Chem Soc Rev; 2008 Oct; 37(10):2224-42. PubMed ID: 18818825 [TBL] [Abstract][Full Text] [Related]
33. Recent progress in the immobilization of catalysts for selective oxidation in the liquid phase. Alaerts L; Wahlen J; Jacobs PA; De Vos DE Chem Commun (Camb); 2008 Apr; (15):1727-37. PubMed ID: 18379676 [TBL] [Abstract][Full Text] [Related]
34. A designed metal-organic framework based on a metal-organic polyhedron. Zou Y; Park M; Hong S; Lah MS Chem Commun (Camb); 2008 May; (20):2340-2. PubMed ID: 18473063 [TBL] [Abstract][Full Text] [Related]
35. Postsynthetic modification switches an achiral framework to catalytically active homochiral metal-organic porous materials. Banerjee M; Das S; Yoon M; Choi HJ; Hyun MH; Park SM; Seo G; Kim K J Am Chem Soc; 2009 Jun; 131(22):7524-5. PubMed ID: 19438178 [TBL] [Abstract][Full Text] [Related]
36. Solvent-free oxidation of benzyl alcohol using Au-Pd catalysts prepared by sol immobilisation. Dimitratos N; Lopez-Sanchez JA; Morgan D; Carley AF; Tiruvalam R; Kiely CJ; Bethell D; Hutchings GJ Phys Chem Chem Phys; 2009 Jul; 11(25):5142-53. PubMed ID: 19562147 [TBL] [Abstract][Full Text] [Related]
37. Exploring the reactivity of framework vanadium, niobium, and tantalum sites in zeolitic materials using DFT reactivity descriptors. Tielens F J Comput Chem; 2009 Sep; 30(12):1946-51. PubMed ID: 19130497 [TBL] [Abstract][Full Text] [Related]
38. Supercritical processing as a route to high internal surface areas and permanent microporosity in metal-organic framework materials. Nelson AP; Farha OK; Mulfort KL; Hupp JT J Am Chem Soc; 2009 Jan; 131(2):458-60. PubMed ID: 19108683 [TBL] [Abstract][Full Text] [Related]
39. A chiral metal-organic framework for sequential asymmetric catalysis. Song F; Wang C; Lin W Chem Commun (Camb); 2011 Aug; 47(29):8256-8. PubMed ID: 21695341 [TBL] [Abstract][Full Text] [Related]
40. Postsynthetic covalent modification of metal-organic framework (MOF) materials. Song YF; Cronin L Angew Chem Int Ed Engl; 2008; 47(25):4635-7. PubMed ID: 18491344 [No Abstract] [Full Text] [Related] [Previous] [Next] [New Search]