These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

260 related articles for article (PubMed ID: 19384594)

  • 1. Neonatal fluoxetine exposure affects the neuronal structure in the somatosensory cortex and somatosensory-related behaviors in adolescent rats.
    Lee LJ
    Neurotox Res; 2009 Apr; 15(3):212-23. PubMed ID: 19384594
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neonatal fluoxetine exposure affects the action potential properties and dendritic development in cortical subplate neurons of rats.
    Liao CC; Lee LJ
    Toxicol Lett; 2011 Dec; 207(3):314-21. PubMed ID: 21986067
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neonatal whisker trimming causes long-lasting changes in structure and function of the somatosensory system.
    Lee LJ; Chen WJ; Chuang YW; Wang YC
    Exp Neurol; 2009 Oct; 219(2):524-32. PubMed ID: 19619534
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neonatal exposure to fluoxetine and fluvoxamine alteres spine density in mouse hippocampal CA1 pyramidal neurons.
    Zheng J; Xu DF; Li K; Wang HT; Shen PC; Lin M; Cao XH; Wang R
    Int J Clin Exp Pathol; 2011 Jan; 4(2):162-8. PubMed ID: 21326811
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Long-term consequences of neonatal fluoxetine exposure in adult rats.
    Ko MC; Lee LJ; Li Y; Lee LJ
    Dev Neurobiol; 2014 Oct; 74(10):1038-51. PubMed ID: 24771683
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neonatal fluoxetine exposure alters motor performances of adolescent rats.
    Lee LJ; Lee LJ
    Dev Neurobiol; 2012 Aug; 72(8):1122-32. PubMed ID: 21714104
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Selective serotonin reuptake inhibitor disrupts organization of thalamocortical somatosensory barrels during development.
    Xu Y; Sari Y; Zhou FC
    Brain Res Dev Brain Res; 2004 Jun; 150(2):151-61. PubMed ID: 15158078
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The impact of development and sensory deprivation on dendritic protrusions in the mouse barrel cortex.
    Chen CC; Bajnath A; Brumberg JC
    Cereb Cortex; 2015 Jun; 25(6):1638-53. PubMed ID: 24408954
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Contributions of raphe-cortical and thalamocortical axons to the transient somatotopic pattern of serotonin immunoreactivity in rat cortex.
    Bennett-Clarke CA; Chiaia NL; Rhoades RW
    Somatosens Mot Res; 1997; 14(1):27-33. PubMed ID: 9241726
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neonatal whisker clipping alters behavior, neuronal structure and neural activity in adult rats.
    Chu YF; Yen CT; Lee LJ
    Behav Brain Res; 2013 Feb; 238():124-33. PubMed ID: 23098795
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of neonatal fluoxetine exposure on behavior across development in rats selectively bred for an infantile affective trait.
    Zimmerberg B; Germeyan SC
    Dev Psychobiol; 2015 Mar; 57(2):141-52. PubMed ID: 25503615
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cytidine-5-diphosphocholine supplement in early life induces stable increase in dendritic complexity of neurons in the somatosensory cortex of adult rats.
    Rema V; Bali KK; Ramachandra R; Chugh M; Darokhan Z; Chaudhary R
    Neuroscience; 2008 Aug; 155(2):556-64. PubMed ID: 18619738
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantification of thalamocortical synapses with spiny stellate neurons in layer IV of mouse somatosensory cortex.
    Benshalom G; White EL
    J Comp Neurol; 1986 Nov; 253(3):303-14. PubMed ID: 3793995
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Postnatal fluoxetine treatment affects the development of serotonergic neurons in rats.
    Silva CM; Gonçalves L; Manhaes-de-Castro R; Nogueira MI
    Neurosci Lett; 2010 Oct; 483(3):179-83. PubMed ID: 20696211
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vortioxetine promotes early changes in dendritic morphology compared to fluoxetine in rat hippocampus.
    Chen F; du Jardin KG; Waller JA; Sanchez C; Nyengaard JR; Wegener G
    Eur Neuropsychopharmacol; 2016 Feb; 26(2):234-245. PubMed ID: 26711685
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adolescent fluoxetine exposure produces enduring, sex-specific alterations of visual discrimination and attention in rats.
    LaRoche RB; Morgan RE
    Neurotoxicol Teratol; 2007; 29(1):96-107. PubMed ID: 17182216
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adolescence fluoxetine increases serotonergic activity in the raphe-hippocampus axis and improves depression-like behaviors in female rats that experienced neonatal maternal separation.
    Yoo SB; Kim BT; Kim JY; Ryu V; Kang DW; Lee JH; Jahng JW
    Psychoneuroendocrinology; 2013 Jun; 38(6):777-88. PubMed ID: 23010142
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Forced swimming test and fluoxetine treatment: in vivo evidence that peripheral 5-HT in rat platelet-rich plasma mirrors cerebral extracellular 5-HT levels, whilst 5-HT in isolated platelets mirrors neuronal 5-HT changes.
    Bianchi M; Moser C; Lazzarini C; Vecchiato E; Crespi F
    Exp Brain Res; 2002 Mar; 143(2):191-7. PubMed ID: 11880895
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Developmental and behavioral consequences of prenatal fluoxetine.
    Bairy KL; Madhyastha S; Ashok KP; Bairy I; Malini S
    Pharmacology; 2007; 79(1):1-11. PubMed ID: 17077648
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Clorgyline treatment elevates cortical serotonin and temporarily disrupts the vibrissae-related pattern in rat somatosensory cortex.
    Boylan CB; Bennett-Clarke CA; Crissman RS; Mooney RD; Rhoades RW
    J Comp Neurol; 2000 Nov; 427(1):139-49. PubMed ID: 11042596
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.